CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

\(\mathbb{R}\).

\(\left( { - 3; + \infty } \right)\).

\(\left( { - \infty ;2} \right) \cup \left( {2; + \infty } \right)\).

\(\left( { - \infty ;3} \right)\).

Lời giải

Tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ 2 \right\}\).

Do đó hàm số liên tục trên khoảng \(\left( { - \infty ;2} \right) \cup \left( {2; + \infty } \right)\). Chọn C.

Câu 2

\({x_0} = 4\).

\({x_0} = 0\).

\({x_0} = 2\).

\({x_0} = 3\).

Lời giải

Hàm số xác định khi \(x \ge 2\). Do đó hàm số gián đoạn tại điểm \({x_0} = 0\). Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \frac{1}{2}\).

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \frac{1}{4}\).

Hàm số \(f\left( x \right)\) liên tục tại \(x = 2\).

\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \frac{3}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\(2\).

\(0\).

\( - \frac{3}{5}\).

\( - 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP