Câu hỏi:

18/11/2025 32 Lưu

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left( {a;b} \right)\). Điều kiện cần và đủ để hàm số liên tục trên \(\left[ {a;b} \right]\) là

\(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\).

\(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).

\(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).

\(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Theo định nghĩa, ta có hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) nếu hàm số \(y = f\left( x \right)\) liên tục \(\left( {a;b} \right)\) và \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right);\) \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

\(AK\) với \(K\) là giao điểm của \(IJ\) và \(BC.\)

\(AH\) với \(H\) là giao điểm của \(IJ\) và \(AB.\)

\(AG\) với \(G\) là giao điểm của \(IJ\) và \(AD.\)

\(AF\) với \(F\) là giao điểm của \(IJ\) và \(CD.\)

Lời giải

Đáp án đúng là: D

Cho hình chóp  S . A B C D . Gọi  I  là trung điểm của  S D , J  là điểm trên  S C  và không trùng trung điểm  S C . Giao tuyến của hai mặt phẳng  ( A B C D )  và  ( A I J )  là (ảnh 1)

Trong mặt phẳng \(\left( {SCD} \right)\), kẻ \[IJ \cap CD = F.\]

\( \Rightarrow \left\{ \begin{array}{l}F \in IJ \subset \left( {AIJ} \right)\\F \in CD \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow F \in \left( {AIJ} \right) \cap \left( {ABCD} \right).\)

Mặt khác \(A \in \left( {AIJ} \right) \cap \left( {ABCD} \right).\)

Vậy \(\left( {ABCD} \right) \cap \left( {AIJ} \right) = AF.\)

Câu 2

Nếu \(\left( P \right){\rm{//}}\left( Q \right)\) thì \(a{\rm{//}}b.\)

Nếu \(\left( P \right){\rm{//}}\left( Q \right)\) thì \(b{\rm{//}}\left( P \right).\)

Nếu \[\left( P \right){\rm{//}}\left( Q \right)\] thì \(a\) và \(b\) hoặc song song hoặc chéo nhau.

Nếu \(\left( P \right){\rm{//}}\left( Q \right)\) thì \(a{\rm{//}}\left( Q \right).\)

Lời giải

Đáp án đúng là: A

Phương án B, D đúng vì: Nếu \(\left( P \right){\rm{//}}\left( Q \right)\) thì mọi đường thẳng nằm trên một trong hai mặt phẳng sẽ song song với mặt phẳng còn lại.

Phương án C đúng vì: Nếu \[\left( P \right){\rm{//}}\left( Q \right)\] mà \(a \subset \left( P \right)\); \(b \subset \left( Q \right)\) khi đó hai đường thẳng \[a,\,\,b\] không có điểm chung nên hai đường thẳng \(a,\,\,b\) hoặc song song hoặc chéo nhau.

Phương án A sai vì: Nếu \(\left( P \right){\rm{//}}\left( Q \right)\) thì \(a\) và \(b\) có thể chéo nhau.

Câu 3

\({u_7} = {u_4}{q^3}.\)

\({u_7} = {u_4}{q^4}.\)

\({u_7} = {u_4}{q^5}.\)

\({u_7} = {u_4}{q^6}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\(x = \frac{{2\pi }}{3} + k2\pi ,\,\,k \in \mathbb{Z}.\)

\(x = \pm \frac{\pi }{3} + k\pi ,\,\,k \in \mathbb{Z}.\)

\(x = \pm \frac{\pi }{3} + k2\pi ,\,\,k \in \mathbb{Z}.\)

\(x = \frac{\pi }{3} + k2\pi ,\,\,k \in \mathbb{Z}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP