Câu hỏi:

18/11/2025 10 Lưu

Khẳng định nào sau đây là đúng?

A. Dãy số \(\left( {{u_n}} \right)\) có giới hạn là số \(a\) (hay \({u_n}\) dần tới \(a\)) khi \(n \to + \infty \), nếu \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} - a} \right) = 0\).
B. Dãy số \(\left( {{u_n}} \right)\) có giới hạn là 0 khi \(n\) dần tới vô cực, nếu \(\left| {{u_n}} \right|\) có thể lớn hơn một số dương tùy ý, kể từ một số hạng nào đó trở đi.          
C. Dãy số \(\left( {{u_n}} \right)\) có giới hạn là \( + \infty \) nếu \({u_n}\) có thể nhỏ hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.                    
D. Dãy số \(\left( {{u_n}} \right)\) có giới hạn là \( - \infty \) khi \(n \to + \infty \) nếu \({u_n}\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Theo định nghĩa giới hạn ta chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Các quãng đường khi bóng đi xuống tạo thành một cấp số nhân lùi vô hạn có \({u_1} = 10\)\(q = \frac{3}{4}\).

Tổng các quãng đường khi bóng đi xuống là \(S = \frac{{{u_1}}}{{1 - q}}\)\( = \frac{{10}}{{1 - \frac{3}{4}}}\) \( = 40\).

Tổng quãng đường bóng đi được đến khi bóng dừng hẳn \(2S - 10 = 70\) (m).

Câu 2

A. \({u_1} = 3;q = - 5\).                   
B. \({u_1} = - 3;q = 5\).                 
C. \({u_1} = 4;q = - 3\).    
D. \({u_1} = -4;q =  3\).    

Lời giải

Đáp án đúng là: D

\(q = \frac{{{u_5}}}{{{u_4}}} = \frac{{ - 324}}{{ - 108}} = 3\).

\({u_4} = {u_1}{q^3}\)\( \Leftrightarrow - 108 = {u_1} \cdot {3^3}\)\( \Leftrightarrow {u_1} = - 4\).

Câu 3

A. Nếu \(\left( \alpha \right){\rm{//}}\left( \beta \right)\)\(a \subset \left( \alpha \right),b \subset \left( \beta \right)\) thì \(a{\rm{//}}b\).                 
B. Nếu \(a{\rm{//}}\left( \alpha \right)\)\(b{\rm{//}}\left( \beta \right)\) thì \(a{\rm{//}}b\).                 
C. Nếu \(\left( \alpha \right){\rm{//}}\left( \beta \right)\)\(a \subset \left( \alpha \right)\) thì \(a{\rm{//}}\left( \beta \right)\).                  
D. Nếu \(a{\rm{//}}b\)\(a \subset \left( \alpha \right),b \subset \left( \beta \right)\) thì \(\left( \alpha \right){\rm{//}}\left( \beta \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right] = L - M\].   
B. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \cdot g\left( x \right)} \right] = L \cdot M\].      
C. \[\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\].        
D. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = f\left( {{x_0}} \right)\).     
B. \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\).                         
C. \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = f\left( {{x_0}} \right)\).                                              
D. \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP