Câu hỏi:

19/11/2025 7 Lưu

Cho đường thẳng \(a\) song song mặt phẳng \(\left( P \right)\). Chọn khẳng định đúng?

A. Đường thẳng \(a\) và mặt phẳng \(\left( P \right)\) có một điểm chung.      
B. Đường thẳng \(a\) song song với một đường thẳng nằm trong \(\left( P \right)\). 
C. Đường thẳng \(a\) không nằm trong \(\left( P \right)\) và song song với một đường thẳng nằm trong \(\left( P \right)\).
D. Đường thẳng \(a\) và mặt phẳng \(\left( P \right)\) có hai điểm chung.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Đường thẳng \(a\) song song mặt phẳng \(\left( P \right)\) khi đường thẳng \(a\) không nằm trong \(\left( P \right)\) và song song với một đường thẳng nằm trong \(\left( P \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Media VietJack

Gọi \(M,N\) lần lượt là trung điểm của \(AB\)\(AD\).

\(M,N\) lần lượt là trung điểm của \(AB\)\(AD\) nên \(MN\) là đường trung bình của tam giác \(ABD\). Do đó \(MN{\rm{//}}BD\).

\(G\) là trọng tâm tam giác \(SAB\) nên \(\frac{{SG}}{{SM}} = \frac{2}{3}\).

\(G'\)là trọng tâm tam giác \(SAD\) nên \(\frac{{SG'}}{{SN}} = \frac{2}{3}\).

Do \(\frac{{SG}}{{SM}} = \frac{{SG'}}{{SN}} = \frac{2}{3}\) nên \(GG'{\rm{//}}MN\)\(MN{\rm{//}}BD\) nên \(GG'{\rm{//}}BD\).

Lời giải

a) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{{3n - 1}}{{2n + 3}}} \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{n\left( {3 - \frac{1}{n}} \right)}}{{n\left( {2 + \frac{3}{n}} \right)}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{\left( {3 - \frac{1}{n}} \right)}}{{\left( {2 + \frac{3}{n}} \right)}} = \frac{3}{2}\)

\(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{n} = 0;\,\,\mathop {\lim }\limits_{n \to + \infty } \frac{3}{n} = 0\).

b) \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {2x + 1} - 1}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt {2x + 1} - 1} \right)\left( {\sqrt {2x + 1} + 1} \right)}}{{x\left( {\sqrt {2x + 1} + 1} \right)}}\)

\( = \mathop {\lim }\limits_{x \to 0} \frac{{2x + 1 - 1}}{{x\left( {\sqrt {2x + 1} + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{{2x}}{{x\left( {\sqrt {2x + 1} + 1} \right)}}\)

\( = \mathop {\lim }\limits_{x \to 0} \frac{2}{{\left( {\sqrt {2x + 1} + 1} \right)}} = \frac{2}{{\left( {\sqrt {2.0 + 1} + 1} \right)}} = 1.\)

Câu 3

A. \(0\).     
B. \(2\).
C. \(1\).            
D. \( + \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Qua 2 điểm phân biệt có duy nhất một mặt phẳng.

B. Qua 3 điểm phân biệt bất kì có duy nhất một mặt phẳng.

C. Qua 3 điểm không thẳng hàng có duy nhất một mặt phẳng.
D. Qua 4 điểm phân biệt bất kì có duy nhất một mặt phẳng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {ABC} \right)\).          
B. \(\left( {ACD} \right)\).   
C. \(\left( {BCD} \right)\). 
D. \(\left( {ABD} \right)\).\(\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP