Câu hỏi:

19/11/2025 22 Lưu

Cho một cấp số nhân \(\left( {{u_n}} \right)\) có công bội \(q\) thỏa mãn \(\left\{ \begin{array}{l}{u_5} + {u_2} = 36\\{u_6} - {u_4} = 48\end{array} \right.\). Tính \({u_1} + 2024q\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\left\{ \begin{array}{l}{u_5} + {u_2} = 36\\{u_6} - {u_4} = 48\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^4} + {u_1}q = 36\\{u_1}{q^5} - {u_1}{q^3} = 48\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {{q^3} + 1} \right) = 36\\{u_1}{q^3}\left( {{q^2} - 1} \right) = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\{u_1}{q^3}\left( {q - 1} \right)\left( {q + 1} \right) = 48\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\\frac{{36{q^2}\left( {q - 1} \right)}}{{{q^2} - q + 1}} = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^2}\left( {q - 1} \right) = 4\left( {{q^2} - q + 1} \right)\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^3} - 7{q^2} + 4q - 4 = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} \cdot 2\left( {2 + 1} \right)\left( {{2^2} - 2 + 1} \right) = 36\\q = 2\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\q = 2\end{array} \right.\].

Vậy \({u_1} + 2024q = 2 + 2024 \cdot 2 = 4050\).

Trả lời: 4050.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\left\{ \begin{array}{l}{u_3} =  - 3\\{u_8} =  - 23\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d =  - 3\\{u_1} + 7d =  - 23\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 5\\d =  - 4\end{array} \right.\).

Khi đó \({S_{16}} = \frac{{16}}{2}\left( {2{u_1} + 15d} \right) = 8\left[ {2 \cdot 5 - 15 \cdot \left( { - 4} \right)} \right] = 560\).

Trả lời: 560.

Lời giải

Theo đề ta có \({u_1} =  - 3;{u_n} = 23;d = 2\).

Ta có \({u_n} = {u_1} + \left( {n - 1} \right)d\)\( \Leftrightarrow  - 3 + \left( {n - 1} \right).2 = 23\)\( \Leftrightarrow n = 14\).

Suy ra cấp số cộng có 14 số hạng. Do đó cần viết xen kẽ giữa hai số đã cho 12 số hạng. Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP