Xác định cấp số nhân \(\left( {{u_n}} \right)\) biết:
a) \(\left\{ \begin{array}{l}{u_3} = 15\\{u_5} = 135\\{u_6} < 0\end{array} \right.\); b) \(\left\{ \begin{array}{l}{u_1} + {u_5} = 164\\{u_2} + {u_3} + {u_4} = 78\end{array} \right.\).
Xác định cấp số nhân \(\left( {{u_n}} \right)\) biết:
a) \(\left\{ \begin{array}{l}{u_3} = 15\\{u_5} = 135\\{u_6} < 0\end{array} \right.\); b) \(\left\{ \begin{array}{l}{u_1} + {u_5} = 164\\{u_2} + {u_3} + {u_4} = 78\end{array} \right.\).
Quảng cáo
Trả lời:
a) \(\left\{ \begin{array}{l}{u_3} = 15\\{u_5} = 135\\{u_6} < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_3} = 15\\{u_3}{q^2} = 135\\{u_6} < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_3} = 15\\{q^2} = 9\\{u_6} < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^2} = 15\\{q^2} = 9\\{u_6} < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{5}{3}\\q = - 3\end{array} \right.\).
Suy ra \({u_n} = \frac{5}{3} \cdot {\left( { - 3} \right)^{n - 1}}\).
b) \(\left\{ \begin{array}{l}{u_1} + {u_5} = 164\\{u_2} + {u_3} + {u_4} = 78\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1}{q^4} = 164\\{u_1}q + {u_1}{q^2} + {u_1}{q^3} = 78\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 + {q^4}} \right) = 164\\{u_1}q\left( {1 + q + {q^2}} \right) = 78\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{{164}}{{1 + {q^4}}}\\\frac{{164}}{{1 + {q^4}}}q\left( {1 + q + {q^2}} \right) = 78\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{{164}}{{1 + {q^4}}}\\82q\left( {1 + q + {q^2}} \right) = 39\left( {1 + {q^4}} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{{164}}{{1 + {q^4}}}\\82q + 82{q^2} + 82{q^3} = 39 + 39{q^4}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{{164}}{{1 + {q^4}}}\\\left( {q - 3} \right)\left( {q - \frac{1}{3}} \right)\left( {39{q^2} + 48q + 39} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{{164}}{{1 + {q^4}}}\\\left[ \begin{array}{l}q = 3\\q = \frac{1}{3}\end{array} \right.\end{array} \right.\).
Với \(q = 3\)\( \Rightarrow {u_1} = 2\). Khi đó \({u_n} = 2 \cdot {3^{n - 1}}\).
Với \(q = \frac{1}{3} \Rightarrow {u_1} = 162\). Khi đó \({u_n} = 162 \cdot {\left( {\frac{1}{3}} \right)^{n - 1}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(\left\{ \begin{array}{l}{u_5} + {u_2} = 36\\{u_6} - {u_4} = 48\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^4} + {u_1}q = 36\\{u_1}{q^5} - {u_1}{q^3} = 48\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {{q^3} + 1} \right) = 36\\{u_1}{q^3}\left( {{q^2} - 1} \right) = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\{u_1}{q^3}\left( {q - 1} \right)\left( {q + 1} \right) = 48\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\\frac{{36{q^2}\left( {q - 1} \right)}}{{{q^2} - q + 1}} = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^2}\left( {q - 1} \right) = 4\left( {{q^2} - q + 1} \right)\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^3} - 7{q^2} + 4q - 4 = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} \cdot 2\left( {2 + 1} \right)\left( {{2^2} - 2 + 1} \right) = 36\\q = 2\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\q = 2\end{array} \right.\].
Vậy \({u_1} + 2024q = 2 + 2024 \cdot 2 = 4050\).
Trả lời: 4050.
Lời giải
a) Ta có \({u_2} = {u_1} + 5 = 2 + 5 = 7\).
b) Có \(d = {u_{n + 1}} - {u_n} = 5\).
c) Ta có \({u_n} = {u_1} + \left( {n - 1} \right)d = 2 + \left( {n - 1} \right) \cdot 5 = 5n - 3\).
d) Ta có \({S_{10}} = 10{u_1} + \frac{{10 \cdot 9 \cdot 5}}{2} = 20 + 225 = 245\).
\({S_{100}} = 100{u_1} + \frac{{100 \cdot 99 \cdot 5}}{2} = 200 + 24750 = 24950\).
Vậy \(S = {u_{11}} + {u_{12}} + ... + {u_{100}} = {S_{100}} - {S_{10}} = 24705\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.