Câu hỏi:

20/11/2025 6 Lưu

Đồ thị hàm số \(y = f\left( x \right)\) được vẽ như hình dưới.

Đáp án đúng là: D (ảnh 1)

Đồ thị hàm số có đỉnh và trục đối xứng lần lượt là

A. \(O\left( {0;0} \right)\)\(x = 0\);               
B. \(O\left( {0;0} \right)\)\(y = 0\);
C. \(O\left( {1;1} \right)\)\(x = 1\);               
D. \(O\left( {1;1} \right)\)\(y = 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Dựa vào đồ thị hàm số, ta thấy đồ thị hàm số có đỉnh và trục đối xứng lần lượt là: \(O\left( {0;0} \right)\)\(x = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta mô phỏng bài toán như sau: (ảnh 1)

Vì M là trung điểm của BC nên \[\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\].

Suy ra \[AM = {\overrightarrow {AM} ^2} = \frac{1}{4}{\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = \frac{1}{4}\left( {{{\overrightarrow {AB} }^2} + 2\overrightarrow {AB} \cdot \overrightarrow {AC} + {{\overrightarrow {AC} }^2}} \right)\]

Lại có \[\overrightarrow {AB} \cdot \overrightarrow {AC} = \left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right| \cdot \cos \left( {\overrightarrow {AB} ,\,\overrightarrow {AC} } \right) = c \cdot b.\cos A = bc \cdot \frac{{{c^2} + {b^2} - {a^2}}}{{2bc}} = \frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right)\]

Nên \[A{M^2} = \frac{1}{4}\left( {{c^2} + 2.\frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right) + {b^2}} \right) = \frac{{2\left( {{b^2} + {c^2}} \right) - {a^2}}}{4}\].

Theo tính chất đường phân giác thì \[\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} = \frac{c}{b}\].

Suy ra \[\overrightarrow {BD} = \frac{{BD}}{{DC}}\overrightarrow {DC} = \frac{b}{c}\overrightarrow {DC\,} \,\,\,\,\,\left( * \right)\]

Mặt khác \[\overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} \]\[\overrightarrow {DC} = \overrightarrow {AC} - \overrightarrow {AD} \] thay vào (*) ta được

\[\overrightarrow {AD} - \overrightarrow {AB} = \frac{b}{c}\left( {\overrightarrow {AC} - \overrightarrow {AD} } \right) \Leftrightarrow \left( {b + c} \right)\overrightarrow {AD} = b\overrightarrow {AB} + c\overrightarrow {AC} \]

\[ \Leftrightarrow {\left( {b + c} \right)^2}{\overrightarrow {AD} ^2} = {\left( {b\overrightarrow {AB} } \right)^2} + 2bc\overrightarrow {AB} \overrightarrow {AC} + {\left( {c\overrightarrow {AC} } \right)^2}\]

\[ \Leftrightarrow {\left( {b + c} \right)^2}{\overrightarrow {AD} ^2} = {b^2}{c^2} + 2bc.\frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right) + {c^2}{b^2}\]

\[ \Leftrightarrow {\overrightarrow {AD} ^2} = \frac{{bc}}{{{{\left( {b + c} \right)}^2}}}\left( {b + c - a} \right)\left( {b + c + a} \right)\]

Vậy \[{\overrightarrow {AD} ^2} = \frac{{bc}}{{{{\left( {b + c} \right)}^2}}}\left( {b + c - a} \right)\left( {b + c + a} \right)\].

Lời giải

Ta mô phỏng bài toán như sau:

Từ vị trí \(A\), người ta quan sát một cây ca (ảnh 2)

Vì tam giác \(AHB\) vuông tại \(H\), theo định lí Pythagore ta có:

\(A{B^2} = A{H^2} + H{B^2} = {5^2} + {25^2} = 650\)

Suy ra \(AB = 5\sqrt {26} \).

Lại có: \(\cos \widehat {HAB} = \frac{{AH}}{{AB}} = \frac{5}{{5\sqrt {26} }} = \frac{1}{{\sqrt {26} }}\), suy ra \(\widehat {HAB} \approx 79^\circ \).

Ta có: \(\widehat {HAC} = \widehat {HAB} + \widehat {BAC} = 79^\circ + 45^\circ = 124^\circ \).

Tứ giác \(AHBC\) có: \(\widehat H + \widehat {HAC} + \widehat {ACB} + \widehat {HBC} = 360^\circ \).

Suy ra \(\widehat {ACB} = 360^\circ - \left( {\widehat H + \widehat {HAC} + \widehat {HBC}} \right) = 360^\circ - \left( {90^\circ + 124^\circ + 90^\circ } \right) = 56^\circ \).

Áp dụng định lí sin trong tam giác \(ABC\) ta có:

\(\frac{{BC}}{{\sin \widehat {BAC}}} = \frac{{AB}}{{\sin \widehat {ACB}}} \Rightarrow BC = \frac{{AB\sin \widehat {BAC}}}{{\sin \widehat {ACB}}} = \frac{{5\sqrt {26} \cdot \sin 45^\circ }}{{\sin 56^\circ }} \approx 21,75\).

Vậy chiều cao \(BC\) của cây xấp xỉ 21,75 m.

Câu 3

A. \(\left( { - 1;\,\,1} \right)\);                             
B. \(\left( {1;\,\,3} \right)\);        
C. \(\left( { - 3;\,\,0} \right)\);                      
D. \(\left( {4;\,\, - 2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Gọi \[G\] là trọng tâm tam giác vuông \[ABC\;\] với cạnh huyền \[BC = 12\]. Vectơ GBCG có độ dài bằng

A. 2;                            
B. 4;                                
C. 8; 
D. \(2\sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\emptyset \);        
B. \(\left\{ 1 \right\}\); 
C. \(\left\{ {1;\,\,2;\,\,3} \right\}\);                                             
D. \(\left\{ {1;\,\,2} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(A\backslash B = \left\{ {\frac{1}{2};\,\,1;\,\,2;\,\,3} \right\}\);                                                             
B. \(A\backslash B = \left\{ {\frac{1}{2};\,\,1} \right\}\);
C. \(A\backslash B = \left\{ {\frac{1}{2}} \right\}\);                                                             
D. \(A\backslash B = \left\{ {2;\,\,3} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP