(1 điểm) Từ vị trí \(A\), người ta quan sát một cây cao (như hình dưới). Biết \(AH = 5\,\,{\rm{m,}}\)\(HB = 25\,{\rm{m}}\), \(\widehat {BAC} = 45^\circ \). Tính chiều cao \(BC\) của cây.
(1 điểm) Từ vị trí \(A\), người ta quan sát một cây cao (như hình dưới). Biết \(AH = 5\,\,{\rm{m,}}\)\(HB = 25\,{\rm{m}}\), \(\widehat {BAC} = 45^\circ \). Tính chiều cao \(BC\) của cây.

Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Ta mô phỏng bài toán như sau:

Vì tam giác \(AHB\) vuông tại \(H\), theo định lí Pythagore ta có:
\(A{B^2} = A{H^2} + H{B^2} = {5^2} + {25^2} = 650\)
Suy ra \(AB = 5\sqrt {26} \).
Lại có: \(\cos \widehat {HAB} = \frac{{AH}}{{AB}} = \frac{5}{{5\sqrt {26} }} = \frac{1}{{\sqrt {26} }}\), suy ra \(\widehat {HAB} \approx 79^\circ \).
Ta có: \(\widehat {HAC} = \widehat {HAB} + \widehat {BAC} = 79^\circ + 45^\circ = 124^\circ \).
Tứ giác \(AHBC\) có: \(\widehat H + \widehat {HAC} + \widehat {ACB} + \widehat {HBC} = 360^\circ \).
Suy ra \(\widehat {ACB} = 360^\circ - \left( {\widehat H + \widehat {HAC} + \widehat {HBC}} \right) = 360^\circ - \left( {90^\circ + 124^\circ + 90^\circ } \right) = 56^\circ \).
Áp dụng định lí sin trong tam giác \(ABC\) ta có:
\(\frac{{BC}}{{\sin \widehat {BAC}}} = \frac{{AB}}{{\sin \widehat {ACB}}} \Rightarrow BC = \frac{{AB\sin \widehat {BAC}}}{{\sin \widehat {ACB}}} = \frac{{5\sqrt {26} \cdot \sin 45^\circ }}{{\sin 56^\circ }} \approx 21,75\).
Vậy chiều cao \(BC\) của cây xấp xỉ 21,75 m.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Vì \(\overrightarrow a \) và \(\overrightarrow b \) là hai vectơ vuông góc với nhau nên \(\left( {\overrightarrow a ,\,\,\overrightarrow b } \right) = 90^\circ \).
Do đó, \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\,\overrightarrow b } \right) = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos 90^\circ = 0\).
Câu 2
Lời giải
Đáp án đúng là: C
Vì \(G\) là trọng tâm của tam giác \(ABC\) nên ta có \(AG = \frac{2}{3}AM,\,AG = 2GM\).
Hai vectơ \(\overrightarrow {GA} \) và \(\overrightarrow {GM} \) ngược hướng nên \(\overrightarrow {GA} = - 2\overrightarrow {GM} \). Vậy đáp án A và B đều sai.
Hai vectơ \(\overrightarrow {GA} \) và \(\overrightarrow {AM} \) ngược hướng nên \(\overrightarrow {GA} = - \frac{2}{3}\overrightarrow {AM} \). Vậy đáp án C đúng và đáp án D sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.