Câu hỏi:

21/11/2025 4 Lưu

Hình thoi không có tính chất nào dưới đây?        

A. Hai đường chéo cắt nhau tại trung điểm của mỗi đường.                
B. Hai đường chéo bằng nhau.                        
C. Hai đường chéo là các đường phân giác của các góc của hình thoi.                                 
D. Hai đường chéo vuông góc với nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: B

Hình thoi không có tính chất hai đường chéo bằng nhau.

Chẳng hạn: Trong hình vẽ dưới đây, hai đường chéo \(AC\)\(BD\) của hình thoi \(ABCD\) không bằng nhau.

Hình thoi không có tính chất nào dưới đây? 	A. Hai đường chéo cắt nhau tại trung điểm của mỗi đường.	 	B. Hai đường chéo bằng nhau.	 	C. Hai đường chéo là các đường phân giác của các góc của hình thoi.	 	D. Hai đường chéo vuông góc với nhau. (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành \(ABCD\) c (ảnh 1)

a) Do \(E\) là trung điểm của \(BC\) nên \(BE = \frac{1}{2}BC\) hay \(BC = 2BE.\)

\(BC = 2AB\)\(BC = 2BE\) nên \(AB = BE\).

Theo đề bài, tứ giác \(ABCD\)hình bình hành nên \(AD = BC,\,\,AD\,{\rm{//}}\,BC\).

\(AD = BC\); \(BE = \frac{1}{2}BC;\,AF = \frac{1}{2}AD\) (do \(F\) là trung điểm của \(AD)\) nên \(BE = AF\).

Tứ giác \(ABEF\)\(BE = AF\) (cmt) và \(BE\,{\rm{//}}\,AF\) (vì \(AD\,{\rm{//}}\,BC\))

Suy ra, tứ giác \(ABEF\) là hình bình hành.

Hình bình hành \(ABEF\)\(AB = BE\) nên \(ABEF\) là hình thoi.

b) Vì tứ giác \(ABCD\)hình bình hành nên \(AB = CD,\,\,AB\,{\rm{//}}\,CD\).

\(AB = CD\); \(AB = BI\) (do \(B\) là trung điểm của \(AI)\) nên \(BI = CD\).

Tứ giác \(BICD\)\(BI\,{\rm{//}}\,CD\) (vì \(AB\,{\rm{//}}\,CD\)) và \(BI = CD\) nên tứ giác \(BICD\) là hình bình hành.

Ta thấy \(BD\) vừa là đường trung tuyến vừa là đường phân giác của tam giác \(ADI\) nên tam giác \(ADI\) cân tại \(D\).

Tam giác \(ADI\) cân tại \(D\)\(\widehat {DAI} = 60^\circ \) nên tam giác \(ADI\) là tam giác đều.

Suy ra \(BD\) cũng là đường cao của tam giác \(ADI\) nên \(BD \bot BI\) hay \(\widehat {DBI} = 90^\circ .\)

Hình bình hành \(BICD\)\(\widehat {DBI} = 90^\circ \) nên tứ giác \(BICD\) là hình chữ nhật.

Khi đó, \(E\) là trung điểm của \(DI\).

Ta có tam giác \(ADI\) là tam giác đều\(AE\) là đường trung tuyến nên đồng thời là đường cao.

Do đó, \(AE \bot DI\) hay \(\widehat {AED} = 90^\circ \).

Câu 2

PHẦN II. TỰ LUẬN (7,0 điểm)

 (1,0 điểm) Cho đa thức \(A = 3{x^2}y - 2x{y^2} - 4xy + 1.\)

a) Tìm đa thức \(B\) sao cho \(B - A = - 2{x^3}y + 7{x^2}y + 3xy.\)

b) Tìm đa thức \(M\) sao cho \(A + M = 3{x^2}{y^2} - 5{x^2}y + 8xy\).

Lời giải

Hướng dẫn giải:

a) Ta có \(B - A = - 2{x^3}y + 7{x^2}y + 3xy.\)

Suy ra \(B = - 2{x^3}y + 7{x^2}y + 3xy + A\)

\( = - 2{x^3}y + 7{x^2}y + 3xy + \left( {3{x^2}y - 2x{y^2} - 4xy + 1} \right)\)

\( = - 2{x^3}y + 7{x^2}y + 3xy + 3{x^2}y - 2x{y^2} - 4xy + 1\)

\( = - 2{x^3}y + \left( {7{x^2}y + 3{x^2}y} \right) - 2x{y^2} + \left( {3xy - 4xy} \right) + 1\)

\( = - 2{x^3}y + 10{x^2}y - 2x{y^2} - xy + 1\).

b) Ta có \(A + M = 3{x^2}{y^2} - 5{x^2}y + 8xy\).

Suy ra \(M = 3{x^2}{y^2} - 5{x^2}y + 8xy - A\)

\( = 3{x^2}{y^2} - 5{x^2}y + 8xy - \left( {3{x^2}y - 2x{y^2} - 4xy + 1} \right)\)

\( = 3{x^2}{y^2} - 5{x^2}y + 8xy - 3{x^2}y + 2x{y^2} + 4xy - 1\)

\( = 3{x^2}{y^2} - \left( {5{x^2}y + 3{x^2}y} \right) + 2x{y^2} + \left( {8xy + 4xy} \right) - 1\)

\( = 3{x^2}{y^2} - 8{x^2}y + 2x{y^2} + 12xy - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[2{x^2}y\] và \[0x{y^2}\].                                                      
B. \[\frac{1}{2}{x^3}y\] và \[8{x^3}y\].                     
C. \[3xyz\] và \[4x{y^2}z\].                                                    
D. \[{\left( {x{y^2}} \right)^2}\] và \[x{y^2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[5{x^3}{y^2}\]. 
B. \[6{y^4}\].          
C. \[60xy\].                           
D. \[30{x^4}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[{x^2} - 4\].       
B. \[{x^2} - 2x + 2\].  
C. \[{x^2} - 2x + 25\].                             
D. \[{x^{2\;}} - 4x + 4\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP