Tứ giác \(ABCD\) có \(\widehat {A\,\,} = 65^\circ ,\) \(\widehat {B\,} = \widehat C + 23^\circ ,\) \(\widehat {D\,} = 58^\circ .\) Số đo góc \(C\) là
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Xét tứ giác \(ABCD\) có \(\widehat {A\,\,} + \widehat {B\,} + \widehat {C\,} + \widehat {D\,} = 360^\circ \) (tổng các góc của một tứ giác)
Do đó \(65^\circ + \widehat C + 23^\circ + \widehat C + 58^\circ = 360^\circ \)
Hay \(2\widehat C + 146^\circ = 360^\circ \)
Nên \(2\widehat C = 360^\circ - 146^\circ = 214^\circ \)
Suy ra \(\widehat C = 107^\circ .\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có: \[5{x^2}\left( {5 - 2x} \right) + 4x - 10 = 5{x^2}\left( {5 - 2x} \right) - 2\left( {5 - 2x} \right)\]
Do đó \(5 - 2x\) là nhân tử chung khi phân tích đa thức trên thành nhân tử.
Lời giải
Hướng dẫn giải
1)

a) Xét \(\Delta ABC\) cân tại \(A\) có \(AH\) là đường trung tuyến nên đồng thời là đường cao của tam giác.
Do đó \(AH \bot BC\) nên \(\Delta AHB\) và \(\Delta AHC\) đều vuông tại \(H.\)
Xét \(\Delta AHB\) vuông tại \(H\) có \(HK\) là đường trung tuyến ứng với cạnh huyền \(AB\) nên \(KH = \frac{1}{2}AB\) (tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông).
Tương tự, xét \(\Delta AHC\) vuông tại \(H\) ta có \(IH = \frac{1}{2}AC.\)
Mà \(I,\) \(K\) lần lượt là trung điểm của \(AC\) và \(AB\) nên \(KA = KB = \frac{1}{2}AB;\) \(IA = IC = \frac{1}{2}AC.\)
Lại có \(AB = AC\) (do \(\Delta ABC\) cân tại \(A)\)
Do đó \(KA = KH = IA = IH.\)
Xét tứ giác \(AKHI\) có \(KA = KH = IA = IH\) nên là hình thoi.
b) Xét tứ giác \(AHCE\) có \(I\) là trung điểm của hai đường chéo \(AC,HE\) nên \(AHCE\) là hình bình hành.
Lại có \(\widehat {AHC} = 90^\circ \) nên hình bình hành \(AHCE\) là hình chữ nhật.
Để hình chữ nhật \(AHCE\) là hình vuông thì hai cạnh kề bằng nhau, tức \(HA = HC.\)
Mà \(H\) là trung điểm của \(BC\) nên \(HB = HC = \frac{1}{2}BC.\)
Khi đó \[HA = HB = HC = \frac{1}{2}BC.\]
Xét \(\Delta ABC\) có đường trung tuyến \(AH\) thỏa mãn \[HA = \frac{1}{2}BC\] nên \(\Delta ABC\) vuông tại \(A.\)
Vậy \(\Delta ABC\) vuông cân tại \(A\) thì \(AHCE\) là hình vuông.
2)

Đặt các điểm \[A,{\rm{ }}B,{\rm{ }}C,{\rm{ }}D,{\rm{ }}E,{\rm{ }}M,{\rm{ }}N,{\rm{ }}P\] như hình vẽ trên.
⦁ Xét \(\Delta AMC\) có \(E,P\) lần lượt là trung điểm của \(AC,MC\) (do \(EA = EC,PM = PC)\) nên \(EP\) là đường trung bình của \(\Delta AMC.\)
Do đó \(EP = \frac{1}{2}AM = \frac{1}{2} \cdot 2,7 = 1,35{\rm{\;}}\left( {\rm{m}} \right)\) (tính chất đường trung bình của tam giác).
Hay \(x = 1,35{\rm{\;}}\left( {\rm{m}} \right){\rm{.}}\)
⦁ Ta có \(MB = MN + NB\) và \(MC = MP + PC\)
Mà \(MN = NB = MP = PC\) nên \(MB = MC.\)
Xét \(\Delta ABC\) có \(D,M\) lần lượt là trung điểm của \(AB,BC\) (do \(DB = DA,MB = MC)\) nên \(DM\) là đường trung bình của \(\Delta ABC.\)
Do đó \[DM = \frac{1}{2}AC\] (tính chất đường trung bình của tam giác).
Suy ra \(AC = 2DM = 2 \cdot 2,8 = 5,6{\rm{\;}}\left( {\rm{m}} \right).\) Hay \[y = 5,6{\rm{\;}}\left( {\rm{m}} \right).\]
Vậy độ dài của cây chống đứng bên và độ dài của của cánh kèo lần lượt là \(x = 1,35{\rm{\;}}\left( {\rm{m}} \right);\) \(y = 5,6{\rm{\;}}\left( {\rm{m}} \right).\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


