(0,5 điểm) Cho ba số \[a,\,\,b,\,\,c\] đôi một khác nhau và thỏa mãn:
\[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}.\]
Tính giá trị biểu thức \[T = \frac{{{a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}}}{{3{a^2}{b^2}{c^2}}} + \left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{c}{b}} \right).\]
(0,5 điểm) Cho ba số \[a,\,\,b,\,\,c\] đôi một khác nhau và thỏa mãn:
\[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}.\]
Tính giá trị biểu thức \[T = \frac{{{a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}}}{{3{a^2}{b^2}{c^2}}} + \left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{c}{b}} \right).\]
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\]
Theo bài, \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}\] nên suy ra \[ab + bc + ca = 0.\]
Đặt \[x = ab;y = bc;z = ca.\]
Khi đó \[x + y + z = 0.\] Suy ra \(x + y = - z;\,\,y + z = - x;\,\,z + x = - y.\)
Xét \[\left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{c}{b}} \right) = \left( {1 + \frac{{ab}}{{bc}}} \right)\left( {1 + \frac{{bc}}{{ca}}} \right)\left( {1 + \frac{{ca}}{{ab}}} \right)\]
\[ = \left( {1 + \frac{x}{y}} \right)\left( {1 + \frac{y}{z}} \right)\left( {1 + \frac{z}{x}} \right)\]
\[ = \left( {\frac{{y + x}}{y}} \right)\left( {\frac{{z + y}}{z}} \right)\left( {\frac{{x + z}}{x}} \right)\]
\[ = \frac{{ - z}}{y}.\frac{{ - x}}{z}.\frac{{ - y}}{x} = - 1.\]
Xét \[\frac{{{a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}}}{{3{a^2}{b^2}{c^2}}} = \frac{{{x^3} + {y^3} + {z^3}}}{{3xyz}}\]
\[ = \frac{{{{\left( {x + y} \right)}^3} - 3xy\left( {x + y} \right) + {z^3}}}{{3xyz}}\]
\[ = \frac{{{{\left( { - z} \right)}^3} - 3xy\left( { - z} \right) + {z^3}}}{{3xyz}}\]
\[ = \frac{{ - {z^3} + 3xyz + {z^3}}}{{3xyz}} = \frac{{3xyz}}{{3xyz}} = 1.\]
Từ đó, \[T = \frac{{{a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}}}{{3{a^2}{b^2}{c^2}}} + \left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{c}{b}} \right) = 1 + \left( { - 1} \right) = 0.\]
Vậy \(T = 0.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tứ giác \[AHMK\] có:
\[\widehat {HAK} = 90^\circ \] (do \[\Delta ABC\] tại \[A,\,\,K \in AB,\,\,H \in AC);\]
\(\widehat {MHA} = 90^\circ \) (do \(MH \bot AC);\)
\[\widehat {MKA} = 90^\circ \] (do \[MK \bot AB)\]
Suy ra tứ giác \(AHMK\) là hình chữ nhật (dấu hiệu nhận biết).
b) Ta có \(AHMK\) là hình chữ nhật nên \(AM = HK\) và hai đường chéo này cắt nhau tại trung điểm \(I\) của mỗi đường.
Xét \(\Delta AMC\) có: \(I\) và \(D\) lần lượt là trung điểm của \(AM,MC\)
Suy ra \(ID\) là đường trung bình của \(\Delta AMC\)
Do đó \(ID\,{\rm{//}}\,AC\) và \(ID = \frac{1}{2}AC\) (tính chất đường trung bình của tam giác) (1)
Xét \(\Delta ABC\) có: \(M\) là trung điểm của \(BC\) và \(MH\,{\rm{//}}\,AB\) (cùng vuông góc \(AC)\)
Nên \(H\) là trung điểm của \(AC,\) do đó \(AH = \frac{1}{2}AC\) (2)
Từ (1) và (2) suy ra \(ID = AH.\)
Xét tứ giác \(AIDH\) có \(ID = AH\) (chứng minh trên) và \(ID\,{\rm{//}}\,AH\) (do \(ID\,{\rm{//}}\,AC)\)
Suy ra tứ giác \[AIDH\] là hình bình hành (dấu hiệu nhận biết).
c) ⦁ Xét \(\Delta KEH\) vuông tại \[E\] có \[I\] là trung điểm \[HK\] nên \[EI\] là đường trung tuyến ứng với cạnh huyền \[HK\]
Do đó \(EI = \frac{1}{2}HK\) (tính chất đường trung tuyến ứng với cạnh huyền).
Mà \(HK = AM\) (chứng minh ở câu b) nên \(EI = \frac{1}{2}AM\)
Mà \[I\] là trung điểm của \[AM\] nên \[EI\] là đường trung tuyến của \(\Delta AEM\)
Do đó \(\Delta AEM\) vuông tại \(E.\)
⦁ Ta có: \(EI = \frac{1}{2}AM\) và \(IM = \frac{1}{2}AM\) (do \(I\) là trung điểm của \(AM)\)
Do đó \(EI = IM,\) nên \(\Delta IME\) cân tại \(I,\) suy ra \(\widehat {{M_1}} = \widehat {{E_2}}\)
Mặt khác: \(\widehat {{M_1}} = \widehat {{E_1}}\) (hai góc so le trong do \(AM\,{\rm{//}}\,ED)\)
Nên \(\widehat {{E_1}} = \widehat {{E_2}}\) hay \[EM\] là phân giác \(\widehat {IEH}.\)
⦁ Vì \[AIDH\] là hình bình hành (câu b) nên \(AI\,{\rm{//}}\,HD\) hay \(AM\,{\rm{//}}\,ED\)
Do đó \(\widehat {{A_1}} = \widehat {{H_1}}\) (hai góc đồng vị) (3)
Ta có \(AM = HK\) và \(AI = \frac{1}{2}AM,\) \(IH = \frac{1}{2}HK\) (do \(I\) là trung điểm của \(AM,HK)\)
Nên \(AI = IH,\) do đó \(\Delta AIH\) cân tại \(I\)
Suy ra \(\widehat {{A_1}} = \widehat {{H_2}}\) (4)
Từ (3) và (4) suy ra \(\widehat {{H_2}} = \widehat {{H_1}}\) hay \(HA\) là phân giác \[\widehat {EHI}.\]
⦁ Xét \[\Delta HIE\] có \[HA,\,\,EM\] lần lượt là phân giác \[\widehat {EHI}\] và \[\widehat {IEH}\]
Suy ra \(IN\) là phân giác \(\widehat {EIH}\) hay \(\widehat {{I_1}} = \widehat {{I_2}}.\)
Xét \(\Delta NIE\) và \(\Delta NIH\) có:
\[NI\] là cạnh chung;
\(\widehat {{I_1}} = \widehat {{I_2}}\)(chứng minh trên);
\(EI = IH\) (cùng bằng \(\frac{1}{2}AM)\)
Do đó \(\Delta NIE = \Delta NIH\) (c.g.c)
Suy ra \(NE = NH\) (hai cạnh tương ứng)
Nên \(\Delta NEH\) cân tại \[N\]
Do đó \(\widehat {NHE} = \widehat {NEH}\) (tính chất tam giác cân)
Mà \(AM\,{\rm{//}}\,ED\) nên \(\widehat {NHE} = \widehat {NMA}\) và \(\widehat {NEH} = \widehat {NAM}\) (các cặp góc đồng vị)
Nên \(\widehat {NMA} = \widehat {NAM}\)
Mặt khác, \(\widehat {NMA} = \widehat {MAB}\) (hai góc so le trong do \(MH\,{\rm{//}}\,AB)\)
Do đó, \(\widehat {NAM} = \widehat {MAB}\)
Vậy \(AM\) là phân giác của \(\widehat {NAB}.\)
Lời giải
Hướng dẫn giải
a)
\[3x\left( {4{x^2} - 9} \right) = 0\]
\[3x\left( {2x - 3} \right)\left( {2x + 3} \right) = 0\]
|
Trường hợp 1: \(3x = 0\) \(x = 0\) |
Trường hợp 2: \(2x - 3 = 0\) \(2x = 3\) \(x = \frac{3}{2}\) |
Trường hợp 3: \(2x + 3 = 0\) \(2x = - 3\) \(x = - \frac{3}{2}.\) |
Vậy \(x \in \left\{ {0;\frac{3}{2}; - \frac{3}{2}} \right\}.\)
b) \[{\left( {4x + 3} \right)^2} = 3x\left( {3 + 4x} \right)\]
\[{\left( {4x + 3} \right)^2} - 3x\left( {3 + 4x} \right) = 0\]
\[\left( {4x + 3} \right)\left( {4x + 3 - 3x} \right) = 0\]
\[\left( {4x + 3} \right)\left( {x + 3} \right) = 0\]
|
Trường hợp 1: \(4x + 3 = 0\) \(4x = - 3\) \(x = - \frac{3}{4}\) |
Trường hợp 2: \(x + 3 = 0\) \(x = - 3.\) |
Vậy \(x \in \left\{ { - \frac{3}{4}; - 3} \right\}.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
