Cho hình chóp tam giác đều \(S.ABC\) có \(AB = 6\,\,{\rm{cm}}\), \(SH = 9\,\,{\rm{cm}}\). Độ dài các cạnh đáy của hình chóp tam giác đều là

Câu hỏi trong đề: Bộ 10 đề thi Cuối kì 1 Toán 8 Chân trời sáng tạo có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C
Hình chóp tam giác đều \(S.ABC\) có đáy là tam giác \(ABC\) đều nên các cạnh đáy của hình chóp bằng nhau hay \(AB = BC = AC = 6\,\,{\rm{cm}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
|
a) \({x^3}y + 2{x^2}y + xy\) \( = xy \cdot \left( {{x^2} + 2x + 1} \right)\) \( = xy \cdot {\left( {x + 1} \right)^2}.\) |
b) \({x^2} - 9 - 4xy + 4{y^2}\) \( = \left( {{x^2} - 4xy + 4{y^2}} \right) - 9\) \( = {\left( {x - 2y} \right)^2} - {3^2}\) \( = \left( {x - 2y - 3} \right)\left( {x - 2y + 3} \right).\) |
Lời giải
Hướng dẫn giải
Ta có \({a^2} + {b^2} + {c^2} = ab + bc + ca\)
\(2{a^2} + 2{b^2} + 2{c^2} = 2ab + 2bc + 2ca\)
\(2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ca = 0\)
\({\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {a - c} \right)^2} = 0\)
Ta thấy \({\left( {a - b} \right)^2} \ge 0;\,{\left( {b - c} \right)^2} \ge 0;{\left( {a - c} \right)^2} \ge 0\).
Khi đó, \({\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {a - c} \right)^2} \ge 0\) thì \[\left\{ \begin{array}{l}{\left( {a - b} \right)^2} = 0\\{\left( {b - c} \right)^2} = 0\\{\left( {a - c} \right)^2} = 0\end{array} \right.\] nên \[a - b = b - c = a - c = 0.\]
Khi đó \[a = b = c\] và \(a + b + c = 2022\).
Do đó \[a = b = c = \frac{{2022}}{3} = 674\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

