Câu hỏi:

21/11/2025 5 Lưu

Hình chóp tứ giác đều có mặt đáy là hình gì?        

A. Hình vuông.        
B. Tam giác đều.     
C. Hình chữ nhật.       
D. Hình thoi.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: A

Hình chóp tứ giác đều có mặt đáy là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

1. Áp dụng định lý Pythagore vào tam giác \[AHB\] vuông tại \[H\], ta có:

\(A{B^2} = A{H^2} + H{B^2}\) hay \(H{B^2} = A{B^2} - A{H^2}\)

Suy ra \(H{B^2} = {5^2} - {3^2} = 25 - 9 = 16\).

Do đó \[HB = \sqrt {16} = 4\,\,({\rm{m)}}\]; \(CH = CB - HB = 10 - 4 = 6\,({\rm{m)}}\).

Áp dụng định lí Pythagore vào tam giác \[AHC\] vuông tại \[H\], ta có:

\(A{C^2} = A{H^2} + C{H^2}\)

\(A{C^2} = {3^2} + {6^2} = 9 + 36 = 45\)

Suy ra \(AC = \sqrt {45} \approx 6,7\,\,{\rm{(m)}}\).

Vậy chiều dài đường trượt AC là \(6,7\,\,{\rm{m}}{\rm{.}}\)

2.

Cho tam giác \(ABC\) vuông (ảnh 2)

a) Ta có \(DE = DM\) nên \(D\) là trung điểm của \(EM.\)

Xét tứ giác \(AEBM\)\(D\) là trung điểm của hai đường chéo \(AB\)\(EM\)

Do đó tứ giác \(AEBM\) là hình bình hành (dấu hiệu nhận biết).

Xét \(\Delta ABC\) vuông tại \(A\) có đường trung tuyến \(AM\) ứng với cạnh huyền \(BC\) nên \(AM = \frac{1}{2}BC\) (tính chất đường trung tuyến ứng với cạnh huyền).

\(AM\) là đường trung tuyến nên \(M\) là trung điểm của \(BC,\) do đó \(BM = CM = \frac{1}{2}BC.\)

Suy ra \(AM = BM = CM.\)

Hình bình hành \(AEBM\) có hai cạnh kề bằng nhau \(AM = BM\) nên là hình thoi.

Do \(AEBM\) hình thoi nên \(AE = BM\)\(AE\,{\rm{//}}\,BM.\)

Do đó \(AE = CM\)\(AE\,{\rm{//}}\,CM.\)

Tứ giác \(ACME\)\(AE = CM\)\(AE\,{\rm{//}}\,CM\) nên là hình bình hành (dấu hiệu nhận biết).

b) Do\(AEBM\) là hình thoi nên để \(AEBM\) là hình vuông thì \(\widehat {AMB} = 90^\circ \) hay \(AM \bot BC.\)

Khi đó, \(\Delta ABC\) có đường trung tuyến \(AM\) đồng thời là đường cao nên sẽ là tam giác cân tại \(A.\)

Vậy để \(AEBM\) là hình vuông thì \(\Delta ABC\) vuông cân tại \(A\).

Lời giải

Hướng dẫn giải

Từ \(ab + bc + ca = 1,\) ta có:

\({a^2} + 1 = {a^2} + ab + bc + ca = \left( {{a^2} + ab} \right) + \left( {bc + ca} \right)\)

\( = a\left( {a + b} \right) + c\left( {a + b} \right) = \left( {a + b} \right)\left( {a + c} \right);\)

\({b^2} + 1 = {b^2} + ab + bc + ca = \left( {{b^2} + ab} \right) + \left( {bc + ca} \right)\)

\( = b\left( {b + a} \right) + c\left( {a + b} \right) = \left( {a + b} \right)\left( {b + c} \right);\)

\({c^2} + 1 = {c^2} + ab + bc + ca = \left( {{c^2} + bc} \right) + \left( {ab + ca} \right)\)

\[ = c\left( {c + b} \right) + a\left( {b + c} \right) = \left( {b + c} \right)\left( {c + a} \right).\]

Khi đó \(M = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\left( {{c^2} + 1} \right)\)

 \( = \left( {a + b} \right)\left( {a + c} \right)\left( {a + b} \right)\left( {b + c} \right)\left( {b + c} \right)\left( {c + a} \right)\)

 \( = {\left( {a + b} \right)^2}{\left( {b + c} \right)^2}{\left( {c + a} \right)^2}\)

 \( = {\left[ {\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)} \right]^2}\).

Vậy biểu thức \(M = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\left( {{c^2} + 1} \right)\) là bình phương của một số hữu tỉ.

Câu 3

A. \(\frac{{2{S_{xq}}}}{{3a}}.\)             
B. \(\frac{{2{S_{xq}}}}{a}.\)                               
C. \(\frac{{{S_{xq}}}}{a}.\) 
D. \(\frac{{{S_{xq}}}}{{3a}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Biểu đồ hình quạt tròn.                       
B. Biểu đồ hình cột.          
C. Biểu đồ hình tranh.                             
D. Biểu đồ đoạn thẳng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{1}{2}{x^2} - \frac{1}{2}x + 1\).   
B. \(\frac{1}{4}{x^2} - 1\).                     
C. \(\frac{1}{4}{x^2} - \frac{1}{2}x + 1\).         
D. \(\frac{1}{4}{x^2} - x + 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\frac{{3{y^2}}}{{9x{y^2}}}\].         
B. \[\frac{{{y^2}}}{{9x{y^2}}}\].                        
C. \[\frac{{3{y^2}}}{{9xy}}\].                            
D. \[\frac{{3y}}{{9x{y^2}}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP