PHẦN II. TỰ LUẬN (8,0 điểm)
(1,0 điểm) Tìm \(x,\) biết:
a) \({\left( {x - 2} \right)^2} - \left( {x - 3} \right)\left( {x + 3} \right) = 6.\) b) \(2x\left( {x - 3} \right) - 5\left( {3 - x} \right) = 0.\)
PHẦN II. TỰ LUẬN (8,0 điểm)
(1,0 điểm) Tìm \(x,\) biết:
a) \({\left( {x - 2} \right)^2} - \left( {x - 3} \right)\left( {x + 3} \right) = 6.\) b) \(2x\left( {x - 3} \right) - 5\left( {3 - x} \right) = 0.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
|
a) \({\left( {x - 2} \right)^2} - \left( {x - 3} \right)\left( {x + 3} \right) = 6\) \({x^2} - 4x + 4 - \left( {{x^2} - 9} \right) = 6\) \({x^2} - 4x + 4 - {x^2} + 9 = 6\) \(\left( {{x^2} - {x^2}} \right) - 4x = 6 - 4 - 9\) \( - 4x = - 7\) \(x = \frac{7}{4}\) Vậy \(x = \frac{7}{4}.\) |
b) \(2x\left( {x - 3} \right) - 5\left( {3 - x} \right) = 0\) \(2x\left( {x - 3} \right) + 5\left( {x - 3} \right) = 0\) \(\left( {x - 3} \right)\left( {2x + 5} \right) = 0\) Suy ra \(x - 3 = 0\) hoặc \(2x + 5 = 0\) \(x = 3\) hoặc \(2x = - 5\) \(x = 3\) hoặc \(x = - \frac{5}{2}.\) Vậy \(x \in \left\{ {3; - \frac{5}{2}} \right\}.\) |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Ta có \({x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right).\)
Điều kiện xác định của biểu thức \(P\) là \(x - 1 \ne 0,\) \(x + 1 \ne 0,\) \(x \ne 0\) hay \(x \ne 1,\) \(x \ne - 1\) và \(x \ne 0.\)
Vậy điều kiện xác định của biểu thức \(P\) là \(x \ne 1,\) \(x \ne - 1\) và \(x \ne 0.\)
b) Với điều kiện \(x \ne 1,\) \(x \ne - 1\) và \(x \ne 0,\) ta có:
\(P = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 3x}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 4}}{x}\)
\( = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2} + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)
\( = \frac{{{x^2} + 2x + 1 - \left( {{x^2} - 2x + 1} \right) + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)
\( = \frac{{4x + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)
\( = \frac{{{x^2} + x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)
\[ = \frac{{x\left( {x + 1} \right) \cdot \left( {x + 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right) \cdot x}}\]\[ = \frac{{x + 4}}{{x - 1}}.\]
Vậy với \(x \ne 1,\) \(x \ne - 1\) và \(x \ne 0,\) thì \[P = \frac{{x + 4}}{{x - 1}}.\]
c) Với \(x \ne 1,\) \(x \ne - 1\) và \(x \ne 0,\) ta có \[P = \frac{{x + 4}}{{x - 1}} = \frac{{x - 1 + 5}}{{x - 1}} = 1 + \frac{5}{{x - 1}}.\]
Với \(x\) nguyên, để \(P\) đạt giá trị nguyên thì \(\frac{{2025}}{{x - 1}}\) là số nguyên.
Do đó \(5\,\, \vdots \,\,\left( {x - 1} \right)\) hay \(x - 1 \in \) Ư\(\left( 5 \right) = \left\{ {1\,;\,\, - 1\,;\,\,5\,;\,\, - 5} \right\}.\)
Ta có bảng sau:
|
\(x - 1\) |
\(1\) |
\( - 1\) |
\(5\) |
\( - 5\) |
|
\(x\) |
\(2\) (TM) |
\(0\) (TM) |
\(6\) (TM) |
\( - \,4\)(TM) |
Vậy để \(P\) nhận giá trị nguyên thì \(x \in \left\{ {1\,;\,\,0\,;\,\,6\,;\,\, - 4} \right\}.\)
Lời giải
Hướng dẫn giải
Ta có:
\({a^3} + {b^3} + {c^3} = 3abc\)
\({a^3} + {b^3} + {c^3} - 3abc = 0\)
\({\left( {a + b} \right)^3} - 3ab\left( {a + b} \right) + {c^3} - 3abc = 0\)
\({\left( {a + b} \right)^3} + {c^3} - 3ab\left( {a + b + c} \right) = 0\)
\({\left( {a + b + c} \right)^3} - 3\left( {a + b} \right)c\left( {a + b + c} \right) - 3ab\left( {a + b + c} \right) = 0\)
\(\left( {a + b + c} \right)\left[ {{{\left( {a + b + c} \right)}^2} - 3ac - 3bc - 3ab} \right] = 0\)
\(\left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ac - bc - ab} \right) = 0\)
Suy ra \({a^2} + {b^2} + {c^2} - ac - bc - ab = 0\) (do \(a + b + c \ne 0).\)
Nên \[{a^2} + {b^2} + {c^2} = ab + bc + ca.\]
Khi đó ta có \(N = \frac{{{a^2} + {b^2} + {c^2}}}{{{{\left( {a + b + c} \right)}^2}}} = \frac{{{a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ca} \right)}}\)
\( = \frac{{{a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2} + 2\left( {{a^2} + {b^2} + {c^2}} \right)}} = \frac{{{a^2} + {b^2} + {c^2}}}{{3\left( {{a^2} + {b^2} + {c^2}} \right)}} = \frac{1}{3}.\)
Vậy \(N = \frac{1}{3}.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
