Câu hỏi:

21/11/2025 8 Lưu

(3,5 điểm)

1. Tính diện tích xung quanh của hình chóp tứ giác đều được gấp từ miếng bìa có kích thước như hình bên.
Tính diện tích xung quanh của hình chóp tứ giác đều được gấp từ miếng bìa có kích thước như hình bên. (ảnh 1)

2. Cho hình bình hành \[ABCD\]\[BC = 2AB.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[BC,{\rm{ }}AD.\]

a) Chứng minh tứ giác \[MBND\] là hình bình hành.

b) Gọi \[P\] là giao điểm của \[AM\] và \[BN,{\rm{ }}Q\] là giao điểm của \[CN\] và \[DM.\] Chứng minh tứ giác \[PMQN\] là hình chữ nhật.

c) Tính diện tích của tứ giác \[PMQN,\] biết \[AB = 2{\rm{\;cm}},\] \(\widehat {MAD} = 30^\circ .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tính diện tích xung quanh của hình chóp tứ giác đều được gấp từ miếng bìa có kích thước như hình bên. (ảnh 2)

Gấp miếng bìa ta được hình chóp tứ giác đều \(S.ABCD\) có kích thước như hình vẽ.

Khi đó đáy \(ABCD\) là hình vuông và các mặt bên là các tam giác cân.

Gọi \(M\) là trung điểm của \(BC.\)

Khi đó \(BM = \frac{1}{2}AB = \frac{1}{2} \cdot 10 = 5{\rm{\;}}\left( {{\rm{cm}}} \right).\)

Tam giác \(SBC\) cân tại \(S\)\(SM\) là đường trung tuyến đồng thời là đường cao nên \(SM \bot BC\) do đó \(\Delta SBM\) vuông tại \(M.\)

Áp dụng định lí Pythagore, ta có \(S{B^2} = S{M^2} + B{M^2}\)

Suy ra \(S{M^2} = S{B^2} - B{M^2} = {13^2} - {5^2} = 144.\)

Do đó \(SM = 12{\rm{\;}}\left( {{\rm{cm}}} \right).\)

Diện tích của hình chóp tứ giác đều \(S.ABCD\) là:

\({S_{xq}} = \frac{1}{2} \cdot \left( {4 \cdot 10} \right) \cdot 12 = 240{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Vậy diện tích xung quanh của hình chóp tứ giác đều được gấp từ miếng bìa\(240{\rm{\;c}}{{\rm{m}}^2}.\)

2.

Tính diện tích xung quanh của hình chóp tứ giác đều được gấp từ miếng bìa có kích thước như hình bên. (ảnh 3)

a) Do \[ABCD\] là hình bình hành nên \[BC\,{\rm{//}}\,AD\]\[BC = AD.\]

\[M \in BC,{\rm{ }}N \in AD\] nên \[MB\,{\rm{//}}\,ND\].

Lại có \[M,{\rm{ }}N\] lần lượt là trung điểm của \[BC,{\rm{ }}AD\] nên

\(MB = MC = \frac{1}{2}BC;NA = ND = \frac{1}{2}AD\).

Do đó \[MB = MC = NA = ND.\]

Tứ giác \[MBND\]\[MB\,{\rm{//}}\,ND\]\[MB = ND\] nên là hình bình hành.

b) Tương tự câu a, ta chứng minh được \[MANC\] là hình bình hành.

Do \[MBND,{\rm{ }}MANC\] đều là hình bình hành nên \[PN\,{\rm{//}}\,MQ,{\rm{ }}PM\,{\rm{//}}\,NQ\] (do \[P\] là giao điểm của \[AM\]\[BN,{\rm{ }}Q\] là giao điểm của \[CN\]\[DM).\]

Suy ra tứ giác \[PMQN\] là hình bình hành.

Xét \(\Delta ABN\)\(\Delta MNB\) có:

\[AN = BM\] (chứng minh trên)

\[\widehat {ANB} = \widehat {MBN}\](hai góc so le trong do \[BM\,{\rm{//}}\,AN),\]

Cạnh \[BN\] chung

Do đó \(\Delta ABN = \Delta MNB\) (c.g.c).

Suy ra \[AB = MN\] (hai cạnh tương ứng)

Tứ giác \[ABMN\]\[AB = BM = MN = AN\] nên \[ABMN\] là hình thoi.

Suy ra \[AM \bot BN,\] do đó \(\widehat {MPN} = 90^\circ \).

Hình bình hành \[PMQN\]\(\widehat {MPN} = 90^\circ \) nên \[PMQN\] là hình chữ nhật.

c) Ta có \[BM = AB = 2{\rm{\;cm}}.\]

Do \[ABMN\] là hình thoi nên \[AM\] là tia phân giác của \(\widehat {BAN}\).

Suy ra \(\widehat {BAN} = 2\widehat {MAD} = 60^\circ \).

Tam giác \[ABN\]\[AB = AN\]\(\widehat {BAN} = 60^\circ \) nên tam giác \[ABN\] đều.

Suy ra \[BN = AN = AB = 2{\rm{\;cm}}.\]

Do \[P\] là trung điểm của \[BN\] nên \(BP = NP = \frac{{BN}}{2} = 1{\rm{\;(cm)}}\).

Áp dụng định lý Pythagore vào tam giác \[BMP\] vuông tại \[P,\] ta có:

\[B{M^2} = B{P^2} + M{P^2}.\]

Suy ra \[M{P^2} = B{M^2} - B{P^2} = {2^2} - {1^2} = 3.\]

Do đó \(MP = \sqrt 3 {\rm{\;cm}}\).

Do \[PMQN\] là hình chữ nhật nên diện tích của \[PMQN\] là:

\(MP \cdot NP = \sqrt 3 \cdot 1 = \sqrt 3 \;\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Vậy diện tích của tứ giác \[PMQN\]\(\sqrt 3 \;\;{\rm{c}}{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) \({\left( {x - 2} \right)^2} - \left( {x - 3} \right)\left( {x + 3} \right) = 6\)

\({x^2} - 4x + 4 - \left( {{x^2} - 9} \right) = 6\)

\({x^2} - 4x + 4 - {x^2} + 9 = 6\)

\(\left( {{x^2} - {x^2}} \right) - 4x = 6 - 4 - 9\)

\( - 4x = - 7\)

\(x = \frac{7}{4}\)

Vậy \(x = \frac{7}{4}.\)

b) \(2x\left( {x - 3} \right) - 5\left( {3 - x} \right) = 0\)

\(2x\left( {x - 3} \right) + 5\left( {x - 3} \right) = 0\)

\(\left( {x - 3} \right)\left( {2x + 5} \right) = 0\)

Suy ra \(x - 3 = 0\) hoặc \(2x + 5 = 0\)

\(x = 3\) hoặc \(2x = - 5\)

\(x = 3\) hoặc \(x = - \frac{5}{2}.\)

Vậy \(x \in \left\{ {3; - \frac{5}{2}} \right\}.\)

Lời giải

Hướng dẫn giải

a) Ta có \({x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right).\)

Điều kiện xác định của biểu thức \(P\)\(x - 1 \ne 0,\) \(x + 1 \ne 0,\) \(x \ne 0\) hay \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0.\)

Vậy điều kiện xác định của biểu thức \(P\)\(x \ne 1,\) \(x \ne - 1\)\(x \ne 0.\)

b) Với điều kiện \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0,\) ta có:

\(P = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 3x}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 4}}{x}\)

\( = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2} + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\( = \frac{{{x^2} + 2x + 1 - \left( {{x^2} - 2x + 1} \right) + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\( = \frac{{4x + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\( = \frac{{{x^2} + x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\[ = \frac{{x\left( {x + 1} \right) \cdot \left( {x + 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right) \cdot x}}\]\[ = \frac{{x + 4}}{{x - 1}}.\]

Vậy với \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0,\) thì \[P = \frac{{x + 4}}{{x - 1}}.\]

c) Với \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0,\) ta có \[P = \frac{{x + 4}}{{x - 1}} = \frac{{x - 1 + 5}}{{x - 1}} = 1 + \frac{5}{{x - 1}}.\]

Với \(x\) nguyên, để \(P\) đạt giá trị nguyên thì \(\frac{{2025}}{{x - 1}}\) là số nguyên.

Do đó \(5\,\, \vdots \,\,\left( {x - 1} \right)\) hay \(x - 1 \in \) Ư\(\left( 5 \right) = \left\{ {1\,;\,\, - 1\,;\,\,5\,;\,\, - 5} \right\}.\)

Ta có bảng sau:

\(x - 1\)

\(1\)

\( - 1\)

\(5\)

\( - 5\)

\(x\)

\(2\) (TM)

\(0\) (TM)

\(6\) (TM)

\( - \,4\)(TM)

Vậy để \(P\) nhận giá trị nguyên  thì \(x \in \left\{ {1\,;\,\,0\,;\,\,6\,;\,\, - 4} \right\}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({S_{xq}} = 2ab.\)                             
B. \({S_{xq}} = ab.\) 
C. \({S_{xq}} = \frac{1}{2}ab.\)             
D. \({S_{xq}} = 4ab.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[7y\].                  
B. \[7xy\].                
C. \[7x\].                               
D. \[7{x^2}y\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP