Câu hỏi:

06/12/2025 67 Lưu

(1,5 điểm) Cho biểu thức \(P = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 3x}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 4}}{x}.\)

a) Tìm điều kiện xác định của biểu thức \(P.\)

b) Rút gọn biểu thức \(P.\)

c) Tìm số nguyên \(x\) để biểu thức \(P\) nhận giá trị nguyên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Ta có \({x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right).\)

Điều kiện xác định của biểu thức \(P\)\(x - 1 \ne 0,\) \(x + 1 \ne 0,\) \(x \ne 0\) hay \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0.\)

Vậy điều kiện xác định của biểu thức \(P\)\(x \ne 1,\) \(x \ne - 1\)\(x \ne 0.\)

b) Với điều kiện \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0,\) ta có:

\(P = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 3x}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 4}}{x}\)

\( = \left[ {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}} \right] \cdot \frac{{x + 4}}{x}\)

\( = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2} + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\( = \frac{{\left( {x + 1 + x - 1} \right)\left( {x + 1 - x + 1} \right) + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\( = \frac{{2 \cdot 2x + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)\( = \frac{{4x + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\( = \frac{{{x^2} + x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)\[ = \frac{{x\left( {x + 1} \right) \cdot \left( {x + 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right) \cdot x}}\]\[ = \frac{{x + 4}}{{x - 1}}.\]

Vậy với \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0,\) thì \[P = \frac{{x + 4}}{{x - 1}}.\]

c) Với \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0,\) ta có \[P = \frac{{x + 4}}{{x - 1}} = \frac{{x - 1 + 5}}{{x - 1}} = 1 + \frac{5}{{x - 1}}.\]

Với \(x\) nguyên, để biểu thức \(P\) đạt giá trị nguyên thì \(\frac{{5}}{{x - 1}}\) là số nguyên.

Do đó \(5\,\, \vdots \,\,\left( {x - 1} \right)\) hay \(x - 1 \in \) Ư\(\left( 5 \right) = \left\{ {1\,;\,\, - 1\,;\,\,5\,;\,\, - 5} \right\}.\)

Ta có bảng sau:

\(x - 1\)

\(1\)

\( - 1\)

\(5\)

\( - 5\)

\(x\)

\(2\) (TM)

\(0\) (TM)

\(6\) (TM)

\( - \,4\)(TM)

Vậy để biểu thức \(P\) nhận giá trị nguyên  thì \(x \in \left\{ {1\,;\,\,0\,;\,\,6\,;\,\, - 4} \right\}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) \({\left( {x - 2} \right)^2} - \left( {x - 3} \right)\left( {x + 3} \right) = 6\)

\({x^2} - 4x + 4 - \left( {{x^2} - 9} \right) = 6\)

\({x^2} - 4x + 4 - {x^2} + 9 = 6\)

\(\left( {{x^2} - {x^2}} \right) - 4x = 6 - 4 - 9\)

\( - 4x = - 7\)

\(x = \frac{7}{4}\)

Vậy \(x = \frac{7}{4}.\)

b) \(2x\left( {x - 3} \right) - 5\left( {3 - x} \right) = 0\)

\(2x\left( {x - 3} \right) + 5\left( {x - 3} \right) = 0\)

\(\left( {x - 3} \right)\left( {2x + 5} \right) = 0\)

Suy ra \(x - 3 = 0\) hoặc \(2x + 5 = 0\)

\(x = 3\) hoặc \(2x = - 5\)

\(x = 3\) hoặc \(x = - \frac{5}{2}.\)

Vậy \(x \in \left\{ {3; - \frac{5}{2}} \right\}.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Xét tứ giác \(MNPQ\)\(\widehat M + \widehat N + \widehat P + \widehat Q = 360^\circ \) (định lí tổng các góc của một tứ giác)

Thay \(\widehat N = \widehat M + 10^\circ \), \(\widehat P = \widehat N + 10^\circ = \widehat M + 20^\circ \), \(\widehat Q = \widehat P + 10^\circ = \widehat M + 30^\circ \) vào biểu thức trên, ta được:

\(\widehat M + \widehat M + 10^\circ + \widehat M + 20^\circ + \widehat M + 30^\circ = 360^\circ \)

\(4\widehat M + 60^\circ = 360^\circ \)

\(4\widehat {M\,} = 300^\circ \)

\(\widehat M = 75^\circ \)

Vậy \(\widehat M = 75^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({S_{xq}} = 2ab.\)                             
B. \({S_{xq}} = ab.\) 
C. \({S_{xq}} = \frac{1}{2}ab.\)             
D. \({S_{xq}} = 4ab.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP