Câu hỏi:

22/11/2025 5 Lưu

Trong các hình khai triển dưới đây, có bao nhiêu hình gấp lại được thành một hình lăng trụ đứng?

Trong các hình khai triển dưới đây, có bao nhiêu hình gấp lại được thành một hình lăng trụ đứng? (ảnh 1)

A. \(2\);                            

B. \(3\);                    
C. \(4\); 
D. \(5\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Trong các hình trên, Hình 1, Hình 4 và Hình 5 ghép lại được hình lăng trụ đứng tam giác.

Vậy có 3 hình.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\frac{7}{4} - \frac{3}{4}:\frac{{12}}{{21}}\)\( = \frac{7}{4} - \frac{3}{4}.\frac{{21}}{{12}}\)\( = \frac{7}{4} - \frac{{21}}{{16}}\)\( = \frac{7}{{16}}\).

b) \[\sqrt {\frac{4}{9}} - \left| {\frac{{ - 3}}{7}} \right|.\frac{7}{8} = \frac{2}{3} - \frac{3}{7}.\frac{7}{8} = \frac{2}{3} - \frac{3}{8} = \frac{{16}}{{24}} - \frac{9}{{24}} = \frac{5}{{24}}\].

c) \(\left( {\frac{1}{3} - \frac{3}{{10}}} \right):\frac{3}{5} + \left( {\frac{2}{3} - \frac{7}{{10}}} \right):\frac{3}{5}\)\( = \left( {\frac{1}{3} - \frac{3}{{10}}} \right).\frac{5}{3} + \left( {\frac{2}{3} - \frac{7}{{10}}} \right).\frac{5}{3}\)

\( = \left( {\frac{1}{3} - \frac{3}{{10}} + \frac{2}{3} - \frac{7}{{10}}} \right).\frac{5}{3} = \left( {1 - 1} \right).\frac{5}{3} = 0\).

Câu 2

(1,5 điểm) Cho hình vẽ bên, biết \[\widehat {aAx'} = 60^\circ \], \(\widehat {ABC} = 60^\circ \) và tia \(AC\) là tia phân giác của góc \(BAx'\).

Cho hình vẽ bên, biết \[\widehat {aAx'} = (ảnh 1)

a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận của bài toán.

b) Giải thích tại sao \(xx'\,{\rm{//}}\,yy'\).

c) Tính số đo góc \(ACB\).

Lời giải

Cho hình vẽ bên, biết \[\widehat {aAx'} = (ảnh 2)

a) Học sinh vẽ lại hình theo đúng số đo các góc.

GT

\(a,\,\,xx',\,\,yy'\) là các đường thẳng;

\(a\) cắt \(xx'\) tại \(A\), \[\widehat {aAx'} = 60^\circ \];

\(a\) cắt \(yy'\) tại \(B\), \[\widehat {ABC} = 60^\circ \];

tia \(AC\) là tia phân giác của \(\widehat {BAx'}\).

KL

b) Giải thích \(xx'\,{\rm{//}}\,yy'\).

c) Tính \(\widehat {ACB}\).

b) Ta có \[\widehat {aAx'} = \widehat {ABC}\] (cùng bằng \[60^\circ \])

Mà hai góc này ở vị trí đồng vị nên \(xx'\,{\rm{//}}\,yy'\).

c) Ta có \[\widehat {aAx'} + \widehat {BAx'} = 180^\circ \] (hai góc kề bù)

               \[\widehat {BAx'} = 180^\circ - \widehat {aAx'} = 180^\circ - 60^\circ = 120^\circ \]

Tia \(AC\) là tia phân giác của \(\widehat {BAx'}\) nên \(\widehat {BAC} = \widehat {CAx'} = \frac{1}{2}\widehat {BAx'} = 60^\circ \).

Do \(xx'\,{\rm{//}}\,yy'\) (chứng minh câu b) nên \(\widehat {ACB} = \widehat {CAx'} = 60^\circ \) (hai góc so le trong).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \( - 3 \in \mathbb{Z}\);                     
B. \( - 3 \in \mathbb{Q}\);               
C. \( - \frac{1}{2} \in \mathbb{Z}\);                 
D. \( - \frac{1}{2} \in \mathbb{Q}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP