Câu hỏi:

22/11/2025 39 Lưu

Trong các hình khai triển dưới đây, có bao nhiêu hình gấp lại được thành một hình lăng trụ đứng?

Trong các hình khai triển dưới đây, có bao nhiêu hình gấp lại được thành một hình lăng trụ đứng? (ảnh 1)

A. \(2\);                            

B. \(3\);                    
C. \(4\); 
D. \(5\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Trong các hình trên, Hình 1, Hình 4 và Hình 5 ghép lại được hình lăng trụ đứng tam giác.

Vậy có 3 hình.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\frac{8}{5} - \frac{3}{5}:x = 0,4\)

     \(\frac{3}{5}:x = \frac{8}{5} - \frac{2}{5} = \frac{6}{5}\)

     \(x = \frac{3}{5}:\frac{6}{5}\)

     \(x = \frac{3}{5}.\frac{5}{6} = \frac{1}{2}\)

Vậy \(x = \frac{1}{2}\).

 

b) \(\frac{{\left| {2x - 1} \right|}}{5} = \frac{1}{4}\)

    \(4\left| {2x - 1} \right| = 5.1\)

    \(\left| {2x - 1} \right| = \frac{5}{4}\)

Trường hợp 1:

\(2x - 1 = \frac{5}{4}\)

\(2x = \frac{5}{4} + 1\)

\(2x = \frac{9}{4}\)

\(x = \frac{9}{8}\)

Vậy \(x \in \left\{ {\frac{9}{8}; - \frac{1}{8}} \right\}\).

Trường hợp 2:

\(2x - 1 = - \frac{5}{4}\)

\(2x = - \frac{5}{4} + 1\)

\(2x = - \frac{1}{4}\)

\(x = - \frac{1}{8}\)

Lời giải

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{{a + b - c}}{c} = \frac{{b + c - a}}{a} = \frac{{c + a - b}}{b} = \frac{{a + b - c + b + c - a + c + a - b}}{{c + a + b}} = \frac{{a + b + c}}{{a + b + c}} = 1\)

\(\frac{{a + b - c}}{c} = 1\) nên \(a + b - c = c\), suy ra \(a + b = 2c\).

\(\frac{{b + c - a}}{a} = 1\) nên \(b + c - a = a\), suy ra \(b + c = 2a\).

\(\frac{{c + a - b}}{b} = 1\) nên \(c + a - b = b\), suy ra \(c + a = 2b\).

Thay vào biểu thức \(P\) ta có:

\(P = \left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{c}{b}} \right) = \frac{{a + b}}{a}.\frac{{c + a}}{c}.\frac{{b + c}}{b} = \frac{{2c}}{a}.\frac{{2b}}{c}.\frac{{2a}}{b} = \frac{{8abc}}{{abc}} = 8\)

Vậy \(P = 8\).

Câu 3

(1,5 điểm) Cho hình vẽ bên, biết \[\widehat {aAx'} = 60^\circ \], \(\widehat {ABC} = 60^\circ \) và tia \(AC\) là tia phân giác của góc \(BAx'\).

Cho hình vẽ bên, biết \[\widehat {aAx'} = (ảnh 1)

a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận của bài toán.

b) Giải thích tại sao \(xx'\,{\rm{//}}\,yy'\).

c) Tính số đo góc \(ACB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[98\];                  
B. \( \pm 14\);         
C. \[14\];                               
D. -98.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP