Cho 4 số \( - 3{;_{}}7{;_{}}x{;_{}}y\) với \(x;y \ne 0\) và \( - 3x = 7y\), một tỉ lệ thức đúng được thiết lập từ \(4\) số trên là
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 7 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: D
Từ \( - 3x = 7y\) với \(x;y \ne 0\) ta có tỉ lệ thức \(\frac{{ - 3}}{y} = \frac{7}{x}\), \(\frac{{ - 3}}{7} = \frac{y}{x}\), \(\frac{x}{7} = \frac{y}{{ - 3}}\), \(\frac{x}{y} = \frac{7}{{ - 3}}\).
Vậy D đúng; A, B, C sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Với \(x = - \frac{1}{2}\) thì \(\left| x \right| = \left| { - \frac{1}{2}} \right| = \frac{1}{2}\)
Mà \(\frac{1}{2} > - \frac{1}{2}\) suy ra \(\left| x \right| > x\).
Câu 2
(1,5 điểm) Cho hình vẽ bên biết \(\widehat {ACB} = 40^\circ \), \(\widehat {BAC} = 100^\circ \), tia \(Ay\) là tia phân giác của góc \[CAx\].

a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận của bài toán.
b) Tính số đo của góc \(CAy\).
c) Giải thích tại sao \(Ay\,{\rm{//}}\,BC\), từ đó tính số đo góc \(ABC\).
(1,5 điểm) Cho hình vẽ bên biết \(\widehat {ACB} = 40^\circ \), \(\widehat {BAC} = 100^\circ \), tia \(Ay\) là tia phân giác của góc \[CAx\].

a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận của bài toán.
b) Tính số đo của góc \(CAy\).
c) Giải thích tại sao \(Ay\,{\rm{//}}\,BC\), từ đó tính số đo góc \(ABC\).
Lời giải
a) Học sinh vẽ lại hình theo đúng số đo các góc.
|
GT |
\(\widehat {ACB} = 40^\circ \), \(\widehat {BAC} = 100^\circ \); tia \(Ay\) là tia phân giác của \[\widehat {CAx}\]. |
|
KL |
b) Tính \(\widehat {CAy}\). c) Giải thích \(Ay\,{\rm{//}}\,BC\), tính \(\widehat {ABC}\). |
b) Ta có \[\widehat {xAC} + \widehat {BAC} = 180^\circ \] (hai góc kề bù)
\[\widehat {xAC} = 180^\circ - \widehat {BAC} = 180^\circ - 100^\circ = 80^\circ \]
Tia \(Ay\) là tia phân giác của \[\widehat {CAx}\] nên \(\widehat {xAy} = \widehat {CAy} = \frac{1}{2}\widehat {xAC} = 40^\circ \).
b) Ta có \[\widehat {CAy} = \widehat {ACB}\] (cùng bằng \[40^\circ \])
Mà hai góc này ở vị trí so le trong nên \(Ay\,{\rm{//}}\,BC\).
Do \(Ay\,{\rm{//}}\,BC\) nên \(\widehat {ABC} = \widehat {xAy} = 40^\circ \) (hai góc đồng vị).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.