Cho 4 số \( - 3{;_{}}7{;_{}}x{;_{}}y\) với \(x;y \ne 0\) và \( - 3x = 7y\), một tỉ lệ thức đúng được thiết lập từ \(4\) số trên là
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 7 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: D
Từ \( - 3x = 7y\) với \(x;y \ne 0\) ta có tỉ lệ thức \(\frac{{ - 3}}{y} = \frac{7}{x}\), \(\frac{{ - 3}}{7} = \frac{y}{x}\), \(\frac{x}{7} = \frac{y}{{ - 3}}\), \(\frac{x}{y} = \frac{7}{{ - 3}}\).
Vậy D đúng; A, B, C sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
(1,5 điểm) Cho hình vẽ bên biết \(\widehat {ACB} = 40^\circ \), \(\widehat {BAC} = 100^\circ \), tia \(Ay\) là tia phân giác của góc \[CAx\].

a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận của bài toán.
b) Tính số đo của góc \(CAy\).
c) Giải thích tại sao \(Ay\,{\rm{//}}\,BC\), từ đó tính số đo góc \(ABC\).
(1,5 điểm) Cho hình vẽ bên biết \(\widehat {ACB} = 40^\circ \), \(\widehat {BAC} = 100^\circ \), tia \(Ay\) là tia phân giác của góc \[CAx\].

a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận của bài toán.
b) Tính số đo của góc \(CAy\).
c) Giải thích tại sao \(Ay\,{\rm{//}}\,BC\), từ đó tính số đo góc \(ABC\).
Lời giải
a) Học sinh vẽ lại hình theo đúng số đo các góc.
|
GT |
\(\widehat {ACB} = 40^\circ \), \(\widehat {BAC} = 100^\circ \); tia \(Ay\) là tia phân giác của \[\widehat {CAx}\]. |
|
KL |
b) Tính \(\widehat {CAy}\). c) Giải thích \(Ay\,{\rm{//}}\,BC\), tính \(\widehat {ABC}\). |
b) Ta có \[\widehat {xAC} + \widehat {BAC} = 180^\circ \] (hai góc kề bù)
\[\widehat {xAC} = 180^\circ - \widehat {BAC} = 180^\circ - 100^\circ = 80^\circ \]
Tia \(Ay\) là tia phân giác của \[\widehat {CAx}\] nên \(\widehat {xAy} = \widehat {CAy} = \frac{1}{2}\widehat {xAC} = 40^\circ \).
b) Ta có \[\widehat {CAy} = \widehat {ACB}\] (cùng bằng \[40^\circ \])
Mà hai góc này ở vị trí so le trong nên \(Ay\,{\rm{//}}\,BC\).
Do \(Ay\,{\rm{//}}\,BC\) nên \(\widehat {ABC} = \widehat {xAy} = 40^\circ \) (hai góc đồng vị).
Lời giải
Từ dãy tỉ số bằng nhau \(\frac{x}{{y + z + t}} = \frac{y}{{z + t + x}} = \frac{z}{{t + x + y}} = \frac{t}{{x + y + z}}\) ta có:
\(\frac{x}{{y + z + t}} + 1 = \frac{y}{{z + t + x}} + 1 = \frac{z}{{t + x + y}} + 1 = \frac{t}{{x + y + z}} + 1\)
Suy ra \(\frac{{x + y + z + t}}{{y + z + t}} = \frac{{y + z + t + x}}{{z + t + x}} = \frac{{z + t + x + y}}{{t + x + y}} = \frac{{t + x + y + z}}{{x + y + z}}\,\,\,\,\,\left( * \right)\)
Trường hợp 1:
Nếu \(x + y + z + t = 0\) thì \(x + y = - z - t\); \(y + z = - t - x\); \(z + t = - x - y\); \(t + x = - y - z\).
Khi đó \[P = \frac{{x + y}}{{z + t}} + \frac{{y + z}}{{t + x}} + \frac{{z + t}}{{x + y}} + \frac{{t + x}}{{y + z}}\]
\[ = \frac{{ - z - t}}{{z + t}} + \frac{{ - t - x}}{{t + x}} + \frac{{ - x - y}}{{x + y}} + \frac{{ - y - z}}{{y + z}}\]
\( = \left( { - 1} \right) + \left( { - 1} \right) + \left( { - 1} \right) + \left( { - 1} \right) = - 4 \in \mathbb{Z}\).
Trường hợp 2:
Nếu \(x + y + z + t \ne 0\) thì từ \(\left( * \right)\) ta suy ra \(y + z + t = z + t + x = t + x + y = x + y + z\)
Do đó \(x = y = z = t\).
Khi đó \[P = \frac{{x + y}}{{z + t}} + \frac{{y + z}}{{t + x}} + \frac{{z + t}}{{x + y}} + \frac{{t + x}}{{y + z}}\]
\( = \frac{{x + x}}{{x + x}} + \frac{{x + x}}{{x + x}} + \frac{{x + x}}{{x + x}} + \frac{{x + x}}{{x + x}} = 4 \in \mathbb{Z}\)
Vậy \[P = \frac{{x + y}}{{z + t}} + \frac{{y + z}}{{t + x}} + \frac{{z + t}}{{x + y}} + \frac{{t + x}}{{y + z}}\] có giá trị nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
