Câu hỏi:

24/11/2025 9 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Mặt phẳng \(\left( \alpha \right)\) qua \(BD\) và song song với \(SA\), mặt phẳng \(\left( \alpha \right)\) cắt \(SC\)tại \(K.\) Khẳng định nào sau đây là khẳng định đúng?

A. \(SK = \frac{1}{2}KC.\)   
B. \(SK = 2KC.\)         
C. \(SK = 3KC.\)
D. \(SK = KC.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Media VietJack

Xét \(\Delta SAC\) có \(O\) là trung điểm \(AC\); \(OK\parallel SA\) nên \(OK\) là đường trung bình

\( \Rightarrow K\) là trung điểm \(SC\).

Vậy \(SK = KC\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Ta có: \(N = 5 + 9 + 12 + 10 + 6 = 42\)

Tứ phân vị thứ nhất nằm trong nhóm thứ \(2\) là \(\left[ {20;40} \right)\)

\({Q_1} = {a_p} + \frac{{\frac{n}{4} - \left( {{m_1} + ... + {m_{p - 1}}} \right)}}{{{m_p}}}\left( {{a_{p + 1}} - {a_p}} \right)\)

\({Q_1} = 20 + \frac{{\frac{{42}}{4} - 5}}{9}\left( {40 - 20} \right) = \frac{{290}}{9}\)

Tứ phân vị thứ ba nằm trong nhóm thứ \(4\) là \(\left[ {60;80} \right)\)

\({Q_3} = {a_p} + \frac{{\frac{{3n}}{4} - \left( {{m_1} + ... + {m_{p - 1}}} \right)}}{{{m_p}}}\left( {{a_{p + 1}} - {a_p}} \right)\)

\({Q_3} = 60 + \frac{{\frac{{3.42}}{4} - 26}}{{10}}\left( {80 - 60} \right) = 71\)

Vậy: \(9{Q_1} - {Q_3} = 9.\frac{{290}}{9} - 71 = 219\)

Lời giải

Chọn A

\(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 10}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt {4f\left( x \right) + 9} + 3} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 10}}{{\sqrt x - 1}}.\mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt {4f\left( x \right) + 9} + 3}}\)

Xét \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 10}}{{\sqrt x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left[ {f\left( x \right) - 10} \right]\left( {\sqrt x + 1} \right)}}{{x - 1}} = 5\left( {1 + 1} \right) = 10\)

Xét \[\mathop {\lim }\limits_{x \to 1} \sqrt {4f\left( x \right) + 9} = \mathop {\lim }\limits_{x \to 1} \left( {\sqrt {4\frac{{\left( {f\left( x \right) - 10 + 10} \right)}}{{x - 1}}\left( {x - 1} \right) + 9} } \right)\]

\[ = \mathop {\lim }\limits_{x \to 1} \left( {\sqrt {4\left[ {\frac{{f\left( x \right) - 10}}{{x - 1}} + \frac{{10}}{{x - 1}}} \right]\left( {x - 1} \right) + 9} } \right)\]

\[ = \mathop {\lim }\limits_{x \to 1} \left( {\sqrt {4\left( {5 + \frac{{10}}{{x - 1}}} \right)\left( {x - 1} \right) + 9} } \right)\]

\[ = \mathop {\lim }\limits_{x \to 1} \left( {\sqrt {20\left( {x - 1} \right) + 40 + 9} } \right) = \sqrt {49} = 7\]

Suy ra \[\mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt {4f\left( x \right) + 9} + 3}} = \mathop {\lim }\limits_{x \to 1} \frac{1}{{7 + 3}} = \frac{1}{{10}}\]

\(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 10}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt {4f\left( x \right) + 9} + 3} \right)}} = 10.\frac{1}{{10}} = 1\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP