Câu hỏi:

24/11/2025 58 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Mặt phẳng \(\left( \alpha \right)\) qua \(BD\) và song song với \(SA\), mặt phẳng \(\left( \alpha \right)\) cắt \(SC\)tại \(K.\) Khẳng định nào sau đây là khẳng định đúng?

A. \(SK = \frac{1}{2}KC.\)   
B. \(SK = 2KC.\)         
C. \(SK = 3KC.\)
D. \(SK = KC.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Media VietJack

Xét \(\Delta SAC\) có \(O\) là trung điểm \(AC\); \(OK\parallel SA\) nên \(OK\) là đường trung bình

\( \Rightarrow K\) là trung điểm \(SC\).

Vậy \(SK = KC\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Sau ngày thứ nhất hàm lượng thuốc còn là: \(4\% \cdot 150\left( {{\rm{gam}}} \right)\).

+ Sau ngày thứ hai hàm lượng thuốc còn là

\[\left( {150 + 4\% \cdot 150} \right)4\% = 150.4\% + {\left( {4\% } \right)^2} \cdot 150{\rm{\; = }}\left[ {\left( {4\% } \right) + {{\left( {4\% } \right)}^2}} \right] \cdot 150{\rm{(gam)\;}}\]

+ Sau ngày thứ ba hàm lượng thuốc còn là

\[\left( {4\% + {{\left( {4\% } \right)}^2} + {{\left( {4\% } \right)}^3}} \right) \cdot 150{\rm{\;(gam)\;}}\].

+ Sau ngày thứ n hàm lượng thuốc còn là: \[\left( {4\% + {{\left( {4\% } \right)}^2} + \cdot \cdot \cdot + {{\left( {4\% } \right)}^n}} \right) \cdot 150{\rm{\;(gam)\;}}\]

+ Có \[S = 4\% + {\left( {4\% } \right)^2} + \cdot \cdot \cdot + {\left( {4\% } \right)^n} + \cdot \cdot \cdot \] là tổng cấp số nhân lùi vô hạn với \[{U_1} = 4\% ;q = 4\% \]

Nên \(S = 4\% \frac{1}{{1 - 4\% }} = \frac{1}{{24}}\)

Vậy lượng thuốc còn lại sau khi bệnh nhân sử dụng dài hạn khoảng \(150.\frac{1}{{24}} = 6,25(gam)\)

Lời giải

Chọn C

Tiền lương mỗi năm là một cấp số cộng có \({u_1} = 180\) và công sai \(d = 8\)

Giả sử sau \(n\) năm, tổng số tiền lương của người kĩ sư đó là

\({S_n} = \frac{{2{u_1} + \left( {n - 1} \right)d}}{2}.n = \frac{{2.180 + 8\left( {n - 1} \right)}}{2}.n = n\left( {4n + 176} \right) = 4{n^2} + 176n\)

Suy ra \(4{n^2} + 176n = 2160\)

\(\begin{array}{l} \Rightarrow 4{n^2} + 176n - 2160 = 0\\ \Rightarrow \left[ \begin{array}{l}n = 10\\n = - 54\left( L \right)\end{array} \right.\end{array}\)

Vậy sau \(10\) năm thì tổng tiền lương của người kĩ sư đó bằng 2160 triệu đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP