(0,5 điểm) Giả sử một vật dao động điều hoà xung quanh vị trí cân bằng theo phương trình
\(x = 2{\rm{cos}}\left( {5t - \frac{\pi }{6}} \right)\)
Ở đây, thời gian \(t\) tính bằng giây và quãng đường \(x\) tính bằng centimét. Hãy cho biết trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?
(0,5 điểm) Giả sử một vật dao động điều hoà xung quanh vị trí cân bằng theo phương trình
\(x = 2{\rm{cos}}\left( {5t - \frac{\pi }{6}} \right)\)
Ở đây, thời gian \(t\) tính bằng giây và quãng đường \(x\) tính bằng centimét. Hãy cho biết trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?
Quảng cáo
Trả lời:
Vị trí cân bằng của vật dao động điều hòa là vị trí vật đứng yên, khi đó \(x = 0\), ta có
\(\begin{array}{l}2{\rm{cos}}\left( {5t - \frac{\pi }{6}} \right) = 0 \Leftrightarrow {\rm{cos}}\left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \Leftrightarrow t = \frac{{2\pi }}{{15}} + k\frac{\pi }{5},k \in \mathbb{Z}\end{array}\)
Trong khoảng thời gian từ 0 đến 6 giây, tức là \(0 \le t \le 6\) hay
\(0 \le \frac{{2\pi }}{{15}} + k\frac{\pi }{5} \le 6\)\( \Leftrightarrow - \frac{2}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\)
Vì \(k \in \mathbb{Z}\) nên \(k \in \left\{ {0;1;2;3;4;5;6;7;8} \right\}\).
Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) \( \Leftrightarrow {\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - {\left( {\frac{{ - 1}}{3}} \right)^2} = \frac{8}{9}\) \( \Leftrightarrow \sin \alpha = \pm \sqrt {\frac{8}{9}} = \pm \frac{{2\sqrt 2 }}{3}\).
Vì \(\frac{\pi }{2} < \alpha < \pi \) nên \(\sin \alpha > 0\). Do đó \(\sin \alpha = \frac{{2\sqrt 2 }}{3}\).
Lời giải
Ta có \({u_{10}} = {u_1} + 9d = 2 + 9.5 = 47\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.