Cho hàm số \(y = ax + b\).
a) Với \(a = 0\) và \(b \ne 0\) thì đồ thị hàm số đã cho biểu diễn tất cả các nghiệm của phương trình nào? Đồ thị có vị trí như thế nào đối với trục hoành và trục hoành?
b) Xác định \(a\) và \(b\) để đồ thị hàm số đi qua hai điểm \(A\left( {3; - 6} \right)\) và \(B\left( { - 2;4} \right).\)
Cho hàm số \(y = ax + b\).
a) Với \(a = 0\) và \(b \ne 0\) thì đồ thị hàm số đã cho biểu diễn tất cả các nghiệm của phương trình nào? Đồ thị có vị trí như thế nào đối với trục hoành và trục hoành?
b) Xác định \(a\) và \(b\) để đồ thị hàm số đi qua hai điểm \(A\left( {3; - 6} \right)\) và \(B\left( { - 2;4} \right).\)
Quảng cáo
Trả lời:
a) Với \(a = 0\) và \(b \ne 0\) ta có hàm số \(y = b.\)
Đồ thị hàm số \(y = b\) với \(b \ne 0\) có đồ thị là đường thẳng song song với trục hoành và vuông góc với trục tung tại điểm \(b\) nằm trên trục tung.
b) Để đồ thị hàm số \(y = ax + b\) đi qua điểm \(A\left( {3; - 6} \right)\) thì tọa độ điểm \(A\) thỏa mãn hàm số đã cho.
Thay \(x = 3,\,\,y = - 6\) vào hàm số \(y = ax + b,\) ta được:
\( - 6 = a \cdot 3 + b\) hay \(3a + b = - 6\) (1)
Để đồ thị hàm số \(y = ax + b\) đi qua điểm \(B\left( { - 2;4} \right)\) thì tọa độ điểm \(B\) thỏa mãn hàm số đã cho.
Thay \(x = - 2,\,\,y = 4\) vào hàm số \(y = ax + b,\) ta được:
\(4 = a \cdot \left( { - 2} \right) + b\) hay \( - 2a + b = 4\) (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}3a + b = - 6\\ - 2a + b = 4\end{array} \right.\)
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ phương trình trên, ta được:
\(5a = - 10\) suy ra \(a = - 2\).
Thay \(a = - 2\) vào phương trình \(3a + b = - 6,\) ta được: \(3 \cdot \left( { - 2} \right) + b = - 6\) suy ra \(b = 0.\)
Vậy \(a = - 2\) và \(b = 0.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(ABC\) là tam giác đều cạnh \(20{\rm{\;cm}}\) nên \(BC = 20{\rm{\;cm}}\) và \(\widehat {B\,} = 60^\circ .\)
Giả sử \(MB = x\,\,\left( {x > 0} \right){\rm{\;(cm)}}{\rm{.}}\) Khi đó \[QC = x{\rm{\;(cm)}}\] và \(MQ = BC - BM - QC = 20 - 2x{\rm{\;(cm)}}{\rm{.}}\)
Xét \(\Delta MNB\) vuông tại \(M,\) ta có: \(MN = MB \cdot \tan B = x\tan 60^\circ = x\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\)
Diện tích hình chữ nhật \(MNPQ\) là: \(S\left( x \right) = \left( {20 - 2x} \right) \cdot x\sqrt 3 = 2\sqrt 3 \cdot x\left( {10 - x} \right){\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Để diện tích hình chữ nhật \(MNPQ\) lớn nhất thì ta tìm giá trị lớn nhất của biểu thức \(S\left( x \right)\).
⦁ Chứng minh bất đẳng thức: \(ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\,\,\,\,\left( * \right)\) với \(a,\,\,b\) là các số không âm.
Thật vậy, xét hiệu \({\left( {\frac{{a + b}}{2}} \right)^2} - ab = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{4} = \frac{{{a^2} - 2ab + {b^2}}}{4} = \frac{{{{\left( {a - b} \right)}^2}}}{2}\)
Với mọi \(a,\,\,b\) là các số không âm, ta có:
\({\left( {a - b} \right)^2} \ge 0\) nên \(\frac{{{{\left( {a - b} \right)}^2}}}{2} \ge 0\) suy ra \({\left( {\frac{{a + b}}{2}} \right)^2} \ge ab\).
Dấu “=” xảy ra khi và chỉ khi \(a = b.\) Như vậy bất đẳng thức \(\left( * \right)\) đã được chứng minh.
⦁ Áp dụng bất đẳng thức \(\left( * \right)\) cho biểu thức \(S\left( x \right) = 2\sqrt 3 \cdot x\left( {10 - x} \right),\) ta được:
\[S\left( x \right) = 2\sqrt 3 \cdot x\left( {10 - x} \right) \le 2\sqrt 3 \cdot {\left( {\frac{{x + 10 - x}}{2}} \right)^2} = 50\sqrt 3 \].
Dấu “=” xảy ra khi và chỉ khi \[x = 10 - x\] hay \[x = 5\].
Vậy \(MB = 5{\rm{\;cm}}\) thì hình chữ nhật \(MNPQ\) có diện tích lớn nhất.
Lời giải
a) \(9{x^2}\left( {2x - 3} \right) = 0\)
\(9{x^2} = 0\) hoặc \(2x - 3 = 0\)
\({x^2} = 0\) hoặc \(2x = 3\)
\(x = 0\) hoặc \(x = \frac{3}{2}\).
Vậy phương trình đã cho có hai nghệm là \(x = 0;\) \(x = \frac{3}{2}\).b) Điều kiện xác định \(x + 1 \ne 0\) và \(x - 2 \ne 0\) hay \(x \ne - 1\) và \(x \ne 2\).
Quy đồng mẫu hai vế của phương trình, ta được
\(\frac{{3\left( {x - 2} \right) - 2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 2} \right)}} = \frac{{4x - 2}}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\)
Suy ra \(3\left( {x - 2} \right) - 2\left( {x + 1} \right) = 4x - 2\)
\(3x - 6 - 2x - 2 = 4x - 2\)
\[x - 8 = 4x - 2\]
\[3x = - 6\]
\[x = - 2\].
Giá trị \[x = - 2\] thỏa mãn ĐKXĐ. Vậy nghiệm của phương trình là \[x = - 2\].Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Nhiệt độ sôi của một chất là mốc nhiệt độ mà tại đó chất chuyển từ thể lỏng sang thể khí. Ví dụ, nhiệt độ sôi của chlorine là \( - 34^\circ {\rm{C}}\) có nghĩa là dung dịch clo khi đạt đến nhiệt độ \( - 34^\circ {\rm{C}}\) sẽ chuyển sang thể khí (khí chlorine). Nếu gọi \(C\) là nhiệt độ của clo theo đơn vị độ C (Celsius) thì bất đẳng thức \(C > - 34\) biểu thị cho nhiệt độ mà clo ở trạng thái khí. Nếu gọi \(F\) là nhiệt độ của clo theo đơn vị độ \(F\) (Fahrenheit) thì ta có \(F = \frac{9}{5}C + 32.\)
a) Viết bất phương trình biểu diễn điều kiện để clo ở trạng thái khí.
b) Hỏi với những giá trị nào của \(F\) thì clo ở trạng thái khí?
Nhiệt độ sôi của một chất là mốc nhiệt độ mà tại đó chất chuyển từ thể lỏng sang thể khí. Ví dụ, nhiệt độ sôi của chlorine là \( - 34^\circ {\rm{C}}\) có nghĩa là dung dịch clo khi đạt đến nhiệt độ \( - 34^\circ {\rm{C}}\) sẽ chuyển sang thể khí (khí chlorine). Nếu gọi \(C\) là nhiệt độ của clo theo đơn vị độ C (Celsius) thì bất đẳng thức \(C > - 34\) biểu thị cho nhiệt độ mà clo ở trạng thái khí. Nếu gọi \(F\) là nhiệt độ của clo theo đơn vị độ \(F\) (Fahrenheit) thì ta có \(F = \frac{9}{5}C + 32.\)
a) Viết bất phương trình biểu diễn điều kiện để clo ở trạng thái khí.
b) Hỏi với những giá trị nào của \(F\) thì clo ở trạng thái khí?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
