Câu hỏi:

02/12/2025 16 Lưu

Một lớp học có 38 học sinh. Trong đó có 17 học sinh giỏi môn Toán, 15 học sinh giỏi môn Văn Ngữ Văn, 8 học sinh giỏi cả môn Toán và môn Ngữ Văn. Chọn ngẫu nhiên một học sinh trong lớp.

a) Số cách chọn một học sinh trong lớp 38.

Đúng
Sai

b) Xác suất chọn được một hoc sinh giỏi cả hai môn Toán và Ngữ Văn là \(\frac{4}{{19}}\).

Đúng
Sai

c) Xác suất để chọn được một học sinh hoặc giỏi môn Toán hoặc giỏi môn Ngữ Văn là \(\frac{{16}}{{19}}\).

Đúng
Sai
d) Số cách chọn một học sinh giỏi cả hai môn Toán và Ngữ văn là 15.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố “Học sinh được chọn giỏi môn Toán”; \(B\) là biến cố “Học sinh được chọn giỏi môn Văn”.

Theo đề ta có \(P\left( A \right) = \frac{{17}}{{38}};P\left( B \right) = \frac{{15}}{{38}}\).

a) Có 38 cách chọn một học sinh trong lớp.

b) Xác suất chọn được một hoc sinh giỏi cả hai môn Toán và Ngữ Văn là \(\frac{8}{{38}} = \frac{4}{{19}}\).

c) \(A \cup B\) là biến cố “Học sinh được chọn giỏi môn Toán hoặc môn Văn”.

Khi đó \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{17}}{{38}} + \frac{{15}}{{38}} - \frac{8}{{38}} = \frac{{12}}{{19}}\).

d) Số cách chọn một học sinh giỏi cả hai môn Toán và Ngữ văn là 8.

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nhóm \(\left[ {{u_1};{u_2}} \right)\) có giá trị đại diện là \(\frac{1}{2}\left( {{u_1} + {u_2}} \right)\). Chọn A.

Lời giải

Gọi \(A\) là biến cố “Người thứ nhất ném trúng rổ”; \(B\) là biến cố “Người thứ hai ném trúng rổ”;

\(C\) là biến cố “Ít nhất một vận động viên ném trúng rổ”.

Khi đó \(C = A \cup B\). Khi đó \(P\left( C \right) = 1 - P\left( {\overline A \overline B } \right) = 1 - P\left( {\overline A } \right) \cdot P\left( {\overline B } \right) = 1 - 0,2 \cdot 0,3 = 0,94\). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP