Câu hỏi:

02/12/2025 98 Lưu

Một lớp học có 38 học sinh. Trong đó có 17 học sinh giỏi môn Toán, 15 học sinh giỏi môn Văn Ngữ Văn, 8 học sinh giỏi cả môn Toán và môn Ngữ Văn. Chọn ngẫu nhiên một học sinh trong lớp.

a) Số cách chọn một học sinh trong lớp 38.

Đúng
Sai

b) Xác suất chọn được một hoc sinh giỏi cả hai môn Toán và Ngữ Văn là \(\frac{4}{{19}}\).

Đúng
Sai

c) Xác suất để chọn được một học sinh hoặc giỏi môn Toán hoặc giỏi môn Ngữ Văn là \(\frac{{16}}{{19}}\).

Đúng
Sai
d) Số cách chọn một học sinh giỏi cả hai môn Toán và Ngữ văn là 15.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố “Học sinh được chọn giỏi môn Toán”; \(B\) là biến cố “Học sinh được chọn giỏi môn Văn”.

Theo đề ta có \(P\left( A \right) = \frac{{17}}{{38}};P\left( B \right) = \frac{{15}}{{38}}\).

a) Có 38 cách chọn một học sinh trong lớp.

b) Xác suất chọn được một hoc sinh giỏi cả hai môn Toán và Ngữ Văn là \(\frac{8}{{38}} = \frac{4}{{19}}\).

c) \(A \cup B\) là biến cố “Học sinh được chọn giỏi môn Toán hoặc môn Văn”.

Khi đó \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{17}}{{38}} + \frac{{15}}{{38}} - \frac{8}{{38}} = \frac{{12}}{{19}}\).

d) Số cách chọn một học sinh giỏi cả hai môn Toán và Ngữ văn là 8.

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Do số bệnh nhân đến khám là số nguyên nên ta hiệu chỉnh lại như sau:

Số bệnh nhân

\(\left[ {0,5;10,5} \right)\)

\(\left[ {10,5;20,5} \right)\)

\(\left[ {20,5;30,5} \right)\)

\(\left[ {30,5;40,5} \right)\)

\(\left[ {40,5;50,5} \right)\)

Số ngày

7

8

7

6

2

Tổng số ngày khám là \(7 + 8 + 7 + 6 + 2 = 30\).

Gọi \({x_1};{x_2};...;{x_{30}}\) là số bệnh nhân đến khám mỗi ngày xếp theo thứ tự không giảm.

Tứ phân vị thứ nhất là \({x_8} \in \left[ {10,5;20,5} \right)\).

Ta có \({Q_1} = 10,5 + \frac{{\frac{{30}}{4} - 7}}{8} \cdot 10 = 11,125\).

Tứ phân vị thứ hai là \(\frac{{{x_{15}} + {x_{16}}}}{2} \in \left[ {10,5;20,5} \right)\).

Vì \({x_{15}} \in \left[ {10,5;20,5} \right);{x_{16}} \in \left[ {20,5;30,5} \right)\) nên tứ phân vị thứ hai của mẫu số liệu là \({Q_2} = 20,5\).

Tứ phân vị thứ ba là \({x_{23}} \in \left[ {30,5;40,5} \right)\).

Ta có \({Q_3} = 30,5 + \frac{{\frac{{3 \cdot 30}}{4} - 22}}{6} \cdot 10 \approx 31,3\).

b) Vì \({Q_1};{Q_2};{Q_3}\) đều nhỏ hơn 35 nên nhận định của đề bài không hợp lí.

Lời giải

Gọi \(A\) là biến cố “An thắng trận cầu lông”.

TH1: An thắng cả ba sét đầu.

Khi đó \({P_1} = {0,4^3} = 0,064\).

TH2: An thắng khi thi đấu 4 sét đầu

Khi đó \({P_2} = 3 \cdot {\left( {0,4} \right)^3} \cdot 0,6 = 0,1152\).

TH3: An thắng khi thi đấu 5 sét

Khi đó \({P_3} = C_4^2 \cdot {0,4^3} \cdot {0,6^2} = 0,13824\).

Vậy \(P\left( A \right) = {P_1} + {P_2} + {P_3} = 0,064 + 0,1152 + 0,13824 = 0,31744\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Số cuộc gọi trung bình mỗi ngày là 8,1.

Đúng
Sai

b) Nhóm chứa mốt là \(\left[ {5,5;8,5} \right)\).

Đúng
Sai

c) Mốt của mẫu số liệu ghép nhóm là \( \approx 7,21\).

Đúng
Sai
d) Người đó thực hiện tối đa khoảng 8 cuộc gọi mỗi ngày.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP