Câu hỏi:

02/12/2025 0 Lưu

Chứng minh rằng nếu \(\frac{a}{b} = \frac{c}{d}\) thì

b) \(\frac{{7{a^2} + 3ab}}{{11{a^2} - 8{b^2}}} = \frac{{7{c^2} + 3cd}}{{11{c^2} - 8{d^2}}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

b) Ta có:

\(\frac{{7{a^2} + 3ab}}{{11{a^2} - 8{b^2}}} = \frac{{7{k^2}{b^2} + 3k{b^2}}}{{11{k^2}{b^2} - 8{b^2}}} = \frac{{{b^2}\left( {7{k^2} + 3k} \right)}}{{{b^2}\left( {11{k^2} - 8} \right)}} = \frac{{7{k^2} + 3k}}{{11{k^2} - 8}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( 3 \right)\)

\(\frac{{7{c^2} + 3cd}}{{11{c^2} - 8{d^2}}} = \frac{{7{k^2}{d^2} + 3k{d^2}}}{{11{k^2}{d^2} - 8{d^2}}} = \frac{{{d^2}\left( {7{k^2} + 3k} \right)}}{{{d^2}\left( {11{k^2} - 8} \right)}} = \frac{{7{k^2} + 3k}}{{11{k^2} - 8}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( 4 \right)\)

Từ (3) và (4) suy ra: \(\frac{{7{a^2} + 3ab}}{{11{a^2} - 8{b^2}}} = \frac{{7{c^2} + 3cd}}{{11{c^2} - 8{d^2}}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Ta có \(\frac{a}{3} = \frac{b}{8} = \frac{c}{5}\) nên \(\frac{{2a}}{6} = \frac{{3b}}{{24}} = \frac{c}{5}\).

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{{2a}}{6} = \frac{{3b}}{{24}} = \frac{c}{5} = \frac{{2a + 3b - c}}{{6 + 24 - 5}} = \frac{{50}}{{25}} = 2\).

Suy ra \(2a = 12\,;\,\,3b = 48\,;\,\,c = 10\)

Do đó \(a = 6\,;\,\,b = 16\,;\,\,c = 10\).

Lời giải

c) Ta có \(\frac{a}{{10}} = \frac{b}{5};\,\,\frac{b}{2} = \frac{c}{5}\) nên \(\frac{{5a}}{{10}} = \frac{b}{1} = \frac{{2c}}{5}\) suy ra \(\frac{{2a}}{4} = \frac{{3b}}{3} = \frac{{4c}}{{10}}\).

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{{2a}}{4} = \frac{{3b}}{3} = \frac{{4c}}{{10}} = \frac{{2a - 3b + 4c}}{{4 - 3 + 10}} = \frac{{330}}{{11}} = 30\).

Suy ra \(2a = 120\,;\,\,3b = 90\,;\,\,4c = 300\).

Do đó \(a = 30\,;\,\,b = 30\,;\,\,c = 75\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP