Chọn ngẫu nhiên một số tự nhiên có hai chữ số. Tính xác suất để số được chọn chia hết cho \(5\) nhưng không chia hết cho \(2\). (Kết quả ghi dưới dạng số thập phân)
Chọn ngẫu nhiên một số tự nhiên có hai chữ số. Tính xác suất để số được chọn chia hết cho \(5\) nhưng không chia hết cho \(2\). (Kết quả ghi dưới dạng số thập phân)
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: 0,1
Số các số có hai chữ số là: \(\left( {99 - 10} \right):1 + 1 = 90\) số
Các số có hai chữ số chia hết cho 5 nhưng không chia hết cho 2 là: \(15;25;35;45;55;65;75;85;95\).
Do đó, có 9 số có hai chữ số chia hết cho 5 nhưng không chia hết cho 2.
Vậy xác suất để chọn được số chia hết cho 5 nhưng không chia hết cho 2 là: \(\frac{9}{{90}} = \frac{1}{{10}} = 0,1.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đ. b) Đ. c) S. d) Đ.
a) Nhận thấy, \(\Delta ABC\) có \(\widehat A = 40^\circ \) nên \(\widehat B + \widehat C = 180^\circ - \widehat A = 180^\circ - 40^\circ = 140^\circ \).
Do đó, ý a) đúng.
b) Có số đo \(B,\,C\) tỉ lệ nghịch với \(3,\,\,4\) nên \(\frac{{\widehat B}}{4} = \frac{{\widehat C}}{3}\).
Do đó, ý b) là đúng.
c) Theo tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{{\widehat B}}{4} = \frac{{\widehat C}}{3} = \frac{{\widehat B + \widehat C}}{{4 + 3}} = \frac{{140^\circ }}{7} = 20^\circ .\)
Suy ra \(\widehat B = 80^\circ ,\,\,\widehat C = 60^\circ \).
Vậy góc \(B\) là góc có số đo lớn nhất trong tam giác.
Vậy ý c) là sai.
d) Có \(\widehat A < \widehat C < \widehat B\,\,\,\left( {40^\circ < 60^\circ < 80^\circ } \right)\) nên \(BC < AB < AC.\)
Do đó, ý d) là đúng.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đ. b) S. c) Đ. d) S.
a) Vì \(\widehat {BDC}\) là góc ngoài tam giác \(DAC\).
Nên \(\widehat {BDC} > \widehat A = 90^\circ \).
Do đó, ý a) là đúng.
b) Từ a) suy ra \(BC\) là cạnh lớn nhất của \(\Delta DBC\).
Do đó, ý b) là sai.
c) Do đó, \(BC > CD\). (1)
Mặt khác \(\widehat {DEC}\) là góc ngoài của \(\Delta ADE\).
Nên \(\widehat {DEC} > 90^\circ \), do đó \(DC\) là cạnh lớn nhất của \(\Delta DEC\).
Suy ra \(DC > DE\). (2)
Do đó, ý c) là đúng.
d) Từ (1) và (2) ở phần b) và c) có \(DE < BC\).
Do đó, ý d) là sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


