Câu hỏi:

02/12/2025 24 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). Gọi \(M\) là điểm trên cạnh \(SA\) sao cho \(SM = \frac{1}{3}SA\), \(I\) là trung điểm của \(SB\) và \(G\) là trọng tâm tam giác \(SAB\).

a) \(AB//\left( {SCD} \right)\).

Đúng
Sai

b) \(OI//SD\).

Đúng
Sai

c) \(MG//\left( {SBC} \right)\).

Đúng
Sai
d) \(\left( {MOG} \right)//\left( {SBC} \right)\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là điểm trên cạnh SA sao cho SM =1/3 SA, I là trung điểm của SB và G là trọng tâm tam giác SAB. (ảnh 1)

a) Có \(AB//CD\) mà \(CD \subset \left( {SCD} \right)\)\( \Rightarrow AB//\left( {SCD} \right)\).

b) Vì \(O,I\) là trung điểm của \(BD,SB\) nên \(OI\) là đường trung bình của tam giác \(SBD\) \( \Rightarrow OI//SD\).

c) Trong tam giác \(SAB\) có \(\frac{{AM}}{{SA}} = \frac{{AG}}{{AI}} = \frac{2}{3}\) nên \(MG//SB\) mà \(SB \subset \left( {SBC} \right)\) \( \Rightarrow MG//\left( {SBC} \right)\).

d) Ta có \(O\) là trung điểm của \(AC\), \(M\) không là trung điểm của \(SA\) nên \(OM\) không song song với \(SC\)hay \(OM\) cắt \(SC\). Suy ra \(\left( {MOG} \right),\left( {SBC} \right)\) có ít nhất 1 điểm chung.

Đáp án: a) Đúng;    b) Đúng;   c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm cạnh BC,(alpha) là mặt phẳng A,M và song song với SD. Mặt phẳng (alpha ) cắt SB tại N, tính tỉ số SN/SB (kết quả làm tròn đến hàng phần trăm)? (ảnh 1)

Gọi \(I\) là giao điểm của \(AM\) và \(BD\) nên \(I\) là trọng tâm tam giác \(ABC\).

Suy ra \(\frac{{BI}}{{BO}} = \frac{2}{3} \Rightarrow \frac{{BI}}{{BD}} = \frac{1}{3}\).

Ta có \(\left( \alpha  \right)\) và mặt phẳng \(\left( {SBD} \right)\) có chung điểm \(I,\left( \alpha  \right)//SD,SD \subset \left( {SBD} \right)\).

Nên giao tuyến của \(\left( \alpha  \right)\) và \(\left( {SBD} \right)\) là đường thẳng qua \(I\) song song với \(SD\) cắt \(SB\) tại \(N\).

Ta có tam giác \(BIN\) đồng dạng với tam giác \(BDS\).

Suy ra \(\frac{{BN}}{{BS}} = \frac{{BI}}{{BD}} = \frac{1}{3}\) hay \(\frac{{SN}}{{SB}} = \frac{{ID}}{{BD}} = \frac{2}{3} \approx 0,67\).

Trả lời: 0,67.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,K lần lượt là trung điểm của BC và CD. Gọi M là trung điểm của SB. Gọi F là giao điểm của DM và (SIK). Tính tỉ số MF/MD. (ảnh 1)

\(I,K\) lần lượt là trung điểm của \(BC\) và \(CD\) nên \(IK\) là đường trung bình của \(\Delta BCD\).

Suy ra \(IK//BD\).

Ta có \(\left. \begin{array}{l}S \in \left( {SIK} \right) \cap \left( {SBD} \right)\\IK//BD\end{array} \right\} \Rightarrow \)giao tuyến của hai mặt phẳng này là đường thẳng qua \(S\) và song song với \(BD\) cắt \(MD\) tại \(F\).

Khi đó \(F = MD \cap \left( {SIK} \right)\).

Dễ dàng chứng minh \(SDBF\) là hình bình hành.

Ta có \(SF//BD\)\( \Rightarrow \frac{{MF}}{{MD}} = \frac{{MS}}{{MB}} = 1\).

Trả lời: 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Giao tuyến của \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là đường thẳng \(SO\).

Đúng
Sai

b) \(MO//\left( {SCD} \right)\).

Đúng
Sai

c) Giao tuyến của \(\left( {BCM} \right)\) và \(\left( {SAD} \right)\) là đường thẳng \(MN\).

Đúng
Sai
d) Gọi \(I = MN \cap \left( {SBD} \right)\). Khi đó \(2IM = 3IN\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP