Câu hỏi:

02/12/2025 12 Lưu

Dạng 3. Trắc nghiệm trả lời ngắn

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh bằng 6. Gọi M là trung điểm của đoạn thẳng \(SB\) và điểm \(N\) thuộc đoạn thẳng \(SC\) sao cho \(NS = 2NC\). Phép chiếu song song lên mặt phẳng \(\left( {SCD} \right)\) theo phương chiếu \(BD\) biến điểm \(M\) thành điểm \(P\). Phép chiếu song song lên mặt phẳng \(\left( {ABCD} \right)\) theo phương chiếu \(SA\) biến tam giác \(MNP\) thành hình \(T\). Khi đó diện tích hình \(T\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Phép chiếu song song lên mặt phẳng (ABCD) theo phương chiếu SA biến tam giác MNP thành hình T. Khi đó diện tích hình T bằng bao nhiêu? (ảnh 1)

Phép chiếu song song lên mặt phẳng \(\left( {SCD} \right)\) theo phương chiếu \(BD\) biến điểm \(M\) thành điểm \(P\) là trung điểm của \(SD\).

Phép chiếu song song lên mặt phẳng \(\left( {ABCD} \right)\) theo phương chiếu \(SA\) biến tam giác \(MNP\) thành tam giác \(EFK\), với \(E,K\) là trung điểm của đoạn \(AB,AD\) tương ứng, \(F \in AC\) và \(\frac{{SN}}{{SC}} = \frac{2}{3} \Rightarrow \frac{{AF}}{{AC}} = \frac{2}{3}\).

Giả sử \(EK \cap AC = I\), ta có \(AI = \frac{1}{4}AC \Rightarrow AI = \frac{3}{8}AF\).

Ta có \(\frac{{{S_{\Delta FEK}}}}{{{S_{\Delta AEK}}}} = \frac{{FI}}{{AI}} = \frac{5}{3}\) \( \Rightarrow {S_{\Delta FEK}} = \frac{5}{3}{S_{\Delta AEK}} = \frac{5}{3} \cdot \frac{1}{8}{S_{ABCD}} = \frac{5}{{24}} \cdot {6^2} = 7,5\).

Trả lời: 7,5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm cạnh BC,(alpha) là mặt phẳng A,M và song song với SD. Mặt phẳng (alpha ) cắt SB tại N, tính tỉ số SN/SB (kết quả làm tròn đến hàng phần trăm)? (ảnh 1)

Gọi \(I\) là giao điểm của \(AM\) và \(BD\) nên \(I\) là trọng tâm tam giác \(ABC\).

Suy ra \(\frac{{BI}}{{BO}} = \frac{2}{3} \Rightarrow \frac{{BI}}{{BD}} = \frac{1}{3}\).

Ta có \(\left( \alpha  \right)\) và mặt phẳng \(\left( {SBD} \right)\) có chung điểm \(I,\left( \alpha  \right)//SD,SD \subset \left( {SBD} \right)\).

Nên giao tuyến của \(\left( \alpha  \right)\) và \(\left( {SBD} \right)\) là đường thẳng qua \(I\) song song với \(SD\) cắt \(SB\) tại \(N\).

Ta có tam giác \(BIN\) đồng dạng với tam giác \(BDS\).

Suy ra \(\frac{{BN}}{{BS}} = \frac{{BI}}{{BD}} = \frac{1}{3}\) hay \(\frac{{SN}}{{SB}} = \frac{{ID}}{{BD}} = \frac{2}{3} \approx 0,67\).

Trả lời: 0,67.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,K lần lượt là trung điểm của BC và CD. Gọi M là trung điểm của SB. Gọi F là giao điểm của DM và (SIK). Tính tỉ số MF/MD. (ảnh 1)

\(I,K\) lần lượt là trung điểm của \(BC\) và \(CD\) nên \(IK\) là đường trung bình của \(\Delta BCD\).

Suy ra \(IK//BD\).

Ta có \(\left. \begin{array}{l}S \in \left( {SIK} \right) \cap \left( {SBD} \right)\\IK//BD\end{array} \right\} \Rightarrow \)giao tuyến của hai mặt phẳng này là đường thẳng qua \(S\) và song song với \(BD\) cắt \(MD\) tại \(F\).

Khi đó \(F = MD \cap \left( {SIK} \right)\).

Dễ dàng chứng minh \(SDBF\) là hình bình hành.

Ta có \(SF//BD\)\( \Rightarrow \frac{{MF}}{{MD}} = \frac{{MS}}{{MB}} = 1\).

Trả lời: 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Giao tuyến của \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là đường thẳng \(SO\).

Đúng
Sai

b) \(MO//\left( {SCD} \right)\).

Đúng
Sai

c) Giao tuyến của \(\left( {BCM} \right)\) và \(\left( {SAD} \right)\) là đường thẳng \(MN\).

Đúng
Sai
d) Gọi \(I = MN \cap \left( {SBD} \right)\). Khi đó \(2IM = 3IN\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP