Câu hỏi:

02/12/2025 20 Lưu

Cho hình chóp \(S.ABC\). Gọi \(K,N\) lần lượt là trung điểm \(SA,BC\) và \(M\)là điểm thuộc đoạn \(SC\) sao cho \(3SM = 2MC\). Mặt phẳng \(\left( {KMN} \right)\) cắt \(AB\) tại \(I\). Tính \(\frac{{IA}}{{IB}}\) (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABC. Gọi K,N lần lượt là trung điểm SA,BC và M là điểm thuộc đoạn SC sao cho 3SM = 2MC. Mặt phẳng (KMN}) cắt AB tại I. Tính A/B (làm tròn kết quả đến hàng phần trăm). (ảnh 1)

Trong mặt phẳng \(\left( {SAC} \right)\), gọi H là giao điểm của \(KM\) và \(AC\).

Trong mặt phẳng \(\left( {ABC} \right)\), gọi \(I\) là giao điểm của \(HN\) và \(AB\).

Khi đó \(I = AB \cap \left( {KMN} \right)\).

Ta có \(\frac{{SM}}{{MC}} \cdot \frac{{CH}}{{HA}} \cdot \frac{{AK}}{{KS}} = 1\)\( \Leftrightarrow \frac{2}{3} \cdot \frac{{CH}}{{HA}} \cdot 1 = 1 \Rightarrow \frac{{CH}}{{HA}} = \frac{3}{2}\).

Lại có \(\frac{{BN}}{{NC}} \cdot \frac{{CH}}{{HA}} \cdot \frac{{AI}}{{IB}} = 1\)\( \Leftrightarrow 1 \cdot \frac{3}{2} \cdot \frac{{AI}}{{IB}} = 1 \Rightarrow \frac{{AI}}{{IB}} = \frac{2}{3} \approx 0,67\).

Trả lời: 0,67.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm cạnh BC,(alpha) là mặt phẳng A,M và song song với SD. Mặt phẳng (alpha ) cắt SB tại N, tính tỉ số SN/SB (kết quả làm tròn đến hàng phần trăm)? (ảnh 1)

Gọi \(I\) là giao điểm của \(AM\) và \(BD\) nên \(I\) là trọng tâm tam giác \(ABC\).

Suy ra \(\frac{{BI}}{{BO}} = \frac{2}{3} \Rightarrow \frac{{BI}}{{BD}} = \frac{1}{3}\).

Ta có \(\left( \alpha  \right)\) và mặt phẳng \(\left( {SBD} \right)\) có chung điểm \(I,\left( \alpha  \right)//SD,SD \subset \left( {SBD} \right)\).

Nên giao tuyến của \(\left( \alpha  \right)\) và \(\left( {SBD} \right)\) là đường thẳng qua \(I\) song song với \(SD\) cắt \(SB\) tại \(N\).

Ta có tam giác \(BIN\) đồng dạng với tam giác \(BDS\).

Suy ra \(\frac{{BN}}{{BS}} = \frac{{BI}}{{BD}} = \frac{1}{3}\) hay \(\frac{{SN}}{{SB}} = \frac{{ID}}{{BD}} = \frac{2}{3} \approx 0,67\).

Trả lời: 0,67.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,K lần lượt là trung điểm của BC và CD. Gọi M là trung điểm của SB. Gọi F là giao điểm của DM và (SIK). Tính tỉ số MF/MD. (ảnh 1)

\(I,K\) lần lượt là trung điểm của \(BC\) và \(CD\) nên \(IK\) là đường trung bình của \(\Delta BCD\).

Suy ra \(IK//BD\).

Ta có \(\left. \begin{array}{l}S \in \left( {SIK} \right) \cap \left( {SBD} \right)\\IK//BD\end{array} \right\} \Rightarrow \)giao tuyến của hai mặt phẳng này là đường thẳng qua \(S\) và song song với \(BD\) cắt \(MD\) tại \(F\).

Khi đó \(F = MD \cap \left( {SIK} \right)\).

Dễ dàng chứng minh \(SDBF\) là hình bình hành.

Ta có \(SF//BD\)\( \Rightarrow \frac{{MF}}{{MD}} = \frac{{MS}}{{MB}} = 1\).

Trả lời: 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Giao tuyến của \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là đường thẳng \(SO\).

Đúng
Sai

b) \(MO//\left( {SCD} \right)\).

Đúng
Sai

c) Giao tuyến của \(\left( {BCM} \right)\) và \(\left( {SAD} \right)\) là đường thẳng \(MN\).

Đúng
Sai
d) Gọi \(I = MN \cap \left( {SBD} \right)\). Khi đó \(2IM = 3IN\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP