Câu hỏi:

02/12/2025 8 Lưu

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O\), \(AC = 6;BD = 4\). Tam giác \(SBD\) là tam giác đều. Điểm \(I\) thuộc đoạn \(OA\) sao cho \(AI = 2\), mặt phẳng \(\left( \alpha  \right)\) qua \(I\) và song song \(\left( {SBD} \right)\) cắt các cạnh \(AB,AD,AS\) lần lượt tại \(M,N,P\). Tính diện tích tam giác \(MNP\) (kết quả được làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Tính diện tích tam giác MNP (kết quả được làm tròn đến hàng phần trăm). (ảnh 1)

Kẻ \(MN\) đi qua \(I\) và song song \(BD\left( {M \in AB,N \in AD} \right)\).

Kẻ \(MP//SB\left( {K \in SA} \right)\).

Suy ra \(\left( \alpha  \right) \equiv \left( {MNP} \right)\).

Ta có \(MN//BD,MP//SB,NP//SD\).

Ta có \(\frac{{MN}}{{BD}} = \frac{{AI}}{{AO}} = \frac{2}{3}\).

Mặt khác \(\frac{{{S_{MNP}}}}{{{S_{SBD}}}} = {\left( {\frac{{MN}}{{BD}}} \right)^2} = {\left( {\frac{2}{3}} \right)^2} \Rightarrow {S_{MNP}} = \frac{4}{9}{S_{SBD}} = \frac{4}{9} \cdot \frac{{{6^2}\sqrt 3 }}{4} = 4\sqrt 3  \approx 6,93\).

Trả lời: 6,93.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm cạnh BC,(alpha) là mặt phẳng A,M và song song với SD. Mặt phẳng (alpha ) cắt SB tại N, tính tỉ số SN/SB (kết quả làm tròn đến hàng phần trăm)? (ảnh 1)

Gọi \(I\) là giao điểm của \(AM\) và \(BD\) nên \(I\) là trọng tâm tam giác \(ABC\).

Suy ra \(\frac{{BI}}{{BO}} = \frac{2}{3} \Rightarrow \frac{{BI}}{{BD}} = \frac{1}{3}\).

Ta có \(\left( \alpha  \right)\) và mặt phẳng \(\left( {SBD} \right)\) có chung điểm \(I,\left( \alpha  \right)//SD,SD \subset \left( {SBD} \right)\).

Nên giao tuyến của \(\left( \alpha  \right)\) và \(\left( {SBD} \right)\) là đường thẳng qua \(I\) song song với \(SD\) cắt \(SB\) tại \(N\).

Ta có tam giác \(BIN\) đồng dạng với tam giác \(BDS\).

Suy ra \(\frac{{BN}}{{BS}} = \frac{{BI}}{{BD}} = \frac{1}{3}\) hay \(\frac{{SN}}{{SB}} = \frac{{ID}}{{BD}} = \frac{2}{3} \approx 0,67\).

Trả lời: 0,67.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,K lần lượt là trung điểm của BC và CD. Gọi M là trung điểm của SB. Gọi F là giao điểm của DM và (SIK). Tính tỉ số MF/MD. (ảnh 1)

\(I,K\) lần lượt là trung điểm của \(BC\) và \(CD\) nên \(IK\) là đường trung bình của \(\Delta BCD\).

Suy ra \(IK//BD\).

Ta có \(\left. \begin{array}{l}S \in \left( {SIK} \right) \cap \left( {SBD} \right)\\IK//BD\end{array} \right\} \Rightarrow \)giao tuyến của hai mặt phẳng này là đường thẳng qua \(S\) và song song với \(BD\) cắt \(MD\) tại \(F\).

Khi đó \(F = MD \cap \left( {SIK} \right)\).

Dễ dàng chứng minh \(SDBF\) là hình bình hành.

Ta có \(SF//BD\)\( \Rightarrow \frac{{MF}}{{MD}} = \frac{{MS}}{{MB}} = 1\).

Trả lời: 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Giao tuyến của \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là đường thẳng \(SO\).

Đúng
Sai

b) \(MO//\left( {SCD} \right)\).

Đúng
Sai

c) Giao tuyến của \(\left( {BCM} \right)\) và \(\left( {SAD} \right)\) là đường thẳng \(MN\).

Đúng
Sai
d) Gọi \(I = MN \cap \left( {SBD} \right)\). Khi đó \(2IM = 3IN\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP