Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với \(AD//BC\) và \(AD = 2BC\). Gọi \(N\) là trung điểm của \(SA\); \(G,I\) lần lượt là trọng tâm của \(\Delta SAB\) và \(\Delta ABD\).
a) Chứng minh rằng \(GI//\left( {SBD} \right)\) và \(\left( {BGI} \right)//\left( {SCD} \right)\).
b) Tìm giao điểm \(F\) của \(DN\) và mặt phẳng \(\left( {SBC} \right)\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với \(AD//BC\) và \(AD = 2BC\). Gọi \(N\) là trung điểm của \(SA\); \(G,I\) lần lượt là trọng tâm của \(\Delta SAB\) và \(\Delta ABD\).
a) Chứng minh rằng \(GI//\left( {SBD} \right)\) và \(\left( {BGI} \right)//\left( {SCD} \right)\).
b) Tìm giao điểm \(F\) của \(DN\) và mặt phẳng \(\left( {SBC} \right)\).
Câu hỏi trong đề: Bài tập ôn tập Toán 11 Cánh diều Chương 4 có đáp án !!
Quảng cáo
Trả lời:
a) Gọi \(M,H\) lần lượt là trung điểm các cạnh \(AB,AD\).
Ta có \(\frac{{MG}}{{GS}} = \frac{{MI}}{{ID}} = \frac{1}{2}\) \( \Rightarrow GI//SD \Rightarrow GI//\left( {SBD} \right)\).
Vì \(HD = BC\) và \(HD//BC\) nên tứ giác \(BCDH\) là hình bình hành \( \Rightarrow BH//DC\).
Mặt khác \(GI//SD \Rightarrow \left( {BGI} \right)//\left( {SCD} \right)\).
b) Có \(AD//BC\) và \(S = \left( {SBC} \right) \cap \left( {SAD} \right)\) nên giao tuyến ∆ của hai mặt phẳng này đi qua S và song song với \(AD\).
Kẻ \(ND \cap \Delta = F\). Do đó \(F = ND \cap \left( {SBC} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(I\) là giao điểm của \(AM\) và \(BD\) nên \(I\) là trọng tâm tam giác \(ABC\).
Suy ra \(\frac{{BI}}{{BO}} = \frac{2}{3} \Rightarrow \frac{{BI}}{{BD}} = \frac{1}{3}\).
Ta có \(\left( \alpha \right)\) và mặt phẳng \(\left( {SBD} \right)\) có chung điểm \(I,\left( \alpha \right)//SD,SD \subset \left( {SBD} \right)\).
Nên giao tuyến của \(\left( \alpha \right)\) và \(\left( {SBD} \right)\) là đường thẳng qua \(I\) song song với \(SD\) cắt \(SB\) tại \(N\).
Ta có tam giác \(BIN\) đồng dạng với tam giác \(BDS\).
Suy ra \(\frac{{BN}}{{BS}} = \frac{{BI}}{{BD}} = \frac{1}{3}\) hay \(\frac{{SN}}{{SB}} = \frac{{ID}}{{BD}} = \frac{2}{3} \approx 0,67\).
Trả lời: 0,67.
Lời giải
\(I,K\) lần lượt là trung điểm của \(BC\) và \(CD\) nên \(IK\) là đường trung bình của \(\Delta BCD\).
Suy ra \(IK//BD\).
Ta có \(\left. \begin{array}{l}S \in \left( {SIK} \right) \cap \left( {SBD} \right)\\IK//BD\end{array} \right\} \Rightarrow \)giao tuyến của hai mặt phẳng này là đường thẳng qua \(S\) và song song với \(BD\) cắt \(MD\) tại \(F\).
Khi đó \(F = MD \cap \left( {SIK} \right)\).
Dễ dàng chứng minh \(SDBF\) là hình bình hành.
Ta có \(SF//BD\)\( \Rightarrow \frac{{MF}}{{MD}} = \frac{{MS}}{{MB}} = 1\).
Trả lời: 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Giao tuyến của \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là đường thẳng \(SO\).
b) \(MO//\left( {SCD} \right)\).
c) Giao tuyến của \(\left( {BCM} \right)\) và \(\left( {SAD} \right)\) là đường thẳng \(MN\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.