Câu hỏi:

02/12/2025 43 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với \(AD//BC\) và \(AD = 2BC\). Gọi \(N\) là trung điểm của \(SA\); \(G,I\) lần lượt là trọng tâm của \(\Delta SAB\) và \(\Delta ABD\).

a) Chứng minh rằng \(GI//\left( {SBD} \right)\) và \(\left( {BGI} \right)//\left( {SCD} \right)\).

b) Tìm giao điểm \(F\) của \(DN\) và mặt phẳng \(\left( {SBC} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình thang với AD//BC và AD = 2BC. Gọi N là trung điểm của SA; G,I lần lượt là trọng tâm của tam giác SAB và tam giác ABD.  a) Chứng minh rằng GI // SBD) và BG // (SCD). (ảnh 1)

a) Gọi \(M,H\) lần lượt là trung điểm các cạnh \(AB,AD\).

Ta có \(\frac{{MG}}{{GS}} = \frac{{MI}}{{ID}} = \frac{1}{2}\) \( \Rightarrow GI//SD \Rightarrow GI//\left( {SBD} \right)\).

Vì \(HD = BC\) và \(HD//BC\) nên tứ giác \(BCDH\) là hình bình hành \( \Rightarrow BH//DC\).

Mặt khác \(GI//SD \Rightarrow \left( {BGI} \right)//\left( {SCD} \right)\).

b) Có \(AD//BC\) và \(S = \left( {SBC} \right) \cap \left( {SAD} \right)\) nên giao tuyến ∆ của hai mặt phẳng này đi qua S và song song với \(AD\).

Kẻ \(ND \cap \Delta  = F\). Do đó \(F = ND \cap \left( {SBC} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm cạnh BC,(alpha) là mặt phẳng A,M và song song với SD. Mặt phẳng (alpha ) cắt SB tại N, tính tỉ số SN/SB (kết quả làm tròn đến hàng phần trăm)? (ảnh 1)

Gọi \(I\) là giao điểm của \(AM\) và \(BD\) nên \(I\) là trọng tâm tam giác \(ABC\).

Suy ra \(\frac{{BI}}{{BO}} = \frac{2}{3} \Rightarrow \frac{{BI}}{{BD}} = \frac{1}{3}\).

Ta có \(\left( \alpha  \right)\) và mặt phẳng \(\left( {SBD} \right)\) có chung điểm \(I,\left( \alpha  \right)//SD,SD \subset \left( {SBD} \right)\).

Nên giao tuyến của \(\left( \alpha  \right)\) và \(\left( {SBD} \right)\) là đường thẳng qua \(I\) song song với \(SD\) cắt \(SB\) tại \(N\).

Ta có tam giác \(BIN\) đồng dạng với tam giác \(BDS\).

Suy ra \(\frac{{BN}}{{BS}} = \frac{{BI}}{{BD}} = \frac{1}{3}\) hay \(\frac{{SN}}{{SB}} = \frac{{ID}}{{BD}} = \frac{2}{3} \approx 0,67\).

Trả lời: 0,67.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,K lần lượt là trung điểm của BC và CD. Gọi M là trung điểm của SB. Gọi F là giao điểm của DM và (SIK). Tính tỉ số MF/MD. (ảnh 1)

\(I,K\) lần lượt là trung điểm của \(BC\) và \(CD\) nên \(IK\) là đường trung bình của \(\Delta BCD\).

Suy ra \(IK//BD\).

Ta có \(\left. \begin{array}{l}S \in \left( {SIK} \right) \cap \left( {SBD} \right)\\IK//BD\end{array} \right\} \Rightarrow \)giao tuyến của hai mặt phẳng này là đường thẳng qua \(S\) và song song với \(BD\) cắt \(MD\) tại \(F\).

Khi đó \(F = MD \cap \left( {SIK} \right)\).

Dễ dàng chứng minh \(SDBF\) là hình bình hành.

Ta có \(SF//BD\)\( \Rightarrow \frac{{MF}}{{MD}} = \frac{{MS}}{{MB}} = 1\).

Trả lời: 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Giao tuyến của \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là đường thẳng \(SO\).

Đúng
Sai

b) \(MO//\left( {SCD} \right)\).

Đúng
Sai

c) Giao tuyến của \(\left( {BCM} \right)\) và \(\left( {SAD} \right)\) là đường thẳng \(MN\).

Đúng
Sai
d) Gọi \(I = MN \cap \left( {SBD} \right)\). Khi đó \(2IM = 3IN\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP