Cho phí (đơn vị: triệu đồng) để sản xuất \(x\) sản phẩm của một công ty được xác định bởi hàm số \(C\left( x \right) = 2x + 55\). Gọi \(\overline C \left( x \right)\) là chi phí trung bình để sản xuất một sản phẩm. Khi số lượng sản phẩm sản xuất được càng lớn thì chi phí trung bình để sản xuất một sản phẩm càng gần với số tiền nào (đơn vị triệu đồng)?
Cho phí (đơn vị: triệu đồng) để sản xuất \(x\) sản phẩm của một công ty được xác định bởi hàm số \(C\left( x \right) = 2x + 55\). Gọi \(\overline C \left( x \right)\) là chi phí trung bình để sản xuất một sản phẩm. Khi số lượng sản phẩm sản xuất được càng lớn thì chi phí trung bình để sản xuất một sản phẩm càng gần với số tiền nào (đơn vị triệu đồng)?
Câu hỏi trong đề: Bài tập ôn tập Toán 11 Kết nối tri thức Chương 5 có đáp án !!
Quảng cáo
Trả lời:
Ta có \(\overline C \left( x \right) = \frac{{C\left( x \right)}}{x}\).
Khi đó \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 55}}{x} = \mathop {\lim }\limits_{x \to + \infty } \left( {2 + \frac{{55}}{x}} \right) = 2\).
Trả lời: 2.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 2\).
b) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \frac{1}{2}\).
c) Hàm số \(y = f\left( x \right) + \sin x\) không liên tục tại điểm \({x_0} = 0\).
Lời giải
a) Với \(x \in \left( {1; + \infty } \right)\), hàm số \(y = \frac{{{x^2} - 3x + 2}}{{{x^2} - 1}}\) liên tục trên \(\left( {1; + \infty } \right)\).
Do đó hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 2\).
b) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 3x + 2}}{{{x^2} - 1}}\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x + 1}} = - \frac{1}{2}\).
c) Với \(x \in \left( { - \infty ;1} \right)\), hàm số \(f\left( x \right) = - \frac{x}{2}\) liên tục trên \(\left( { - \infty ;1} \right)\).
Do đó hàm số \(y = f\left( x \right)\)liên tục tại điểm \({x_0} = 0\).
Hàm số \(y = \sin x\) liên tục trên \(\mathbb{R}\) nên hàm số \(y = \sin x\) liên tục tại điểm \({x_0} = 0\).
Do đó hàm số \(y = f\left( x \right) + \sin x\)liên tục tại điểm \({x_0} = 0\).
d) Có \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - \frac{x}{2}\;\;} \right) = - \frac{1}{2} = f\left( 1 \right)\).
Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\) nên hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 1\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Câu 2
a) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 1\).
b) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 1\).
c) Hàm số \(f\left( x \right)\) gián đoạn tại điểm \(x = 2\).
Lời giải
a) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {{x^2} - x - 1} \right) = 1\).
b) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} - 3x + 2}}{{x - 2}}\)\( = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{x - 2}}\)\( = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x - 1} \right) = 1\).
c) Vì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right)\) nên hàm số liên tục tại điểm \(x = 2\).
d) Với \(x \in \left( { - \infty ;2} \right)\), hàm số \(f\left( x \right) = \frac{{{x^2} - 3x + 2}}{{x - 2}}\) liên tục trên khoảng \(\left( { - \infty ;2} \right)\);
Với \(x \in \left( {2; + \infty } \right)\), hàm số \(f\left( x \right) = {x^2} - x - 1\) liên tục trên khoảng \(\left( {2; + \infty } \right)\).
Theo câu c, hàm số liên tục tại \(x = 2\).
Do đó hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) Hàm số \(y = f\left( x \right)\)liên tục tại điểm \(x = - 2\).
b) Hàm số \(y = f\left( x \right)\) không liên tục tại điểm \(x = 0\).
c) Hàm số \(y = f\left( x \right)\) liên tục tại điểm \(x = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{{x^4}}} = + \infty \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.