Gọi \(S\) là tập hợp các số tự nhiên có ba chữ số đôi một khác nhau được lập thành từ các số \(1,2,3,4,6\). Chọn ngẫu nhiên một số từ \(S\). Tính xác suất để số được chọn chia hết cho \(3.\)
(Kết quả ghi dưới dạng số thập phân)
Gọi \(S\) là tập hợp các số tự nhiên có ba chữ số đôi một khác nhau được lập thành từ các số \(1,2,3,4,6\). Chọn ngẫu nhiên một số từ \(S\). Tính xác suất để số được chọn chia hết cho \(3.\)
(Kết quả ghi dưới dạng số thập phân)
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: 0,4
Các kết quả có thể xảy ra khi lập một số có ba chữ số khác nhau từ các số \(1,2,3,4,6\) là: \(5.4.3 = 60\).
Gọi \(A\) là biến cố “Số được chọn chia hết cho 3”.
Nhận thấy ta lập được 4 bộ số gồm 3 chữ số có tổng chia hết cho 3 là:
\(\left( {1;2;3} \right);{\rm{ }}\left( {1;2;6} \right);{\rm{ }}\left( {2;3;4} \right);{\rm{ }}\left( {2;4;6} \right)\).
Mỗi bộ số, ta lập được các số có ba chữ số là: \(3.2.1 = 6\) (số)
Do đó, 4 bộ số thì lập được các số có tổng chữ số chia hết cho 3 là: \(6.4 = 24\) (số)
Suy ra số kết quả thuận lợi của biến cố “Số được chọn chia hết cho 3” là: \(24\)số.
Xác suất của biến cố \(A\) là: \(\frac{{24}}{{60}} = \frac{2}{5} = 0,4.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: a) Đúng. b) Sai. c) Sai. d) Đúng.
a) Các kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số lẻ”, đó là: \(1;\,\,3;\,\,5;....;\,\,37;\,\,39.\)
Do đó, có \(20\) kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số lẻ”.
Do đó, ý a) là đúng.
b) Các kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút là bình phương của một số” là:
\(1;\,\,4;\,\,9;\,\,16;\,\,25;\,\,36\).
Do đó, có 6 kết quả thuận lợi cho biến cố này.
Do đó, ý b) là sai.
c) Xác suất của biến cố “Số xuất hiện trên thẻ được rút là bình phương của một số” là: \(\frac{6}{{40}} = \frac{3}{{20}}.\)
Do đó, ý c) là sai.
d) Kết quả thuận lợi của biến cố: “Số xuất hiện trên thẻ được rút ra là lập phương của một số” là: \(1;\,\,8;\,\,27.\)
Do đó có 3 kết quả thuận lợi cho biến cố này.
Vậy xác suất của biến cố này là \(\frac{3}{{40}} = 0,075.\)
Do đó, ý d) là đúng.
Câu 2
Lời giải
Đáp án đúng là: a) Đúng. b) Sai. c) Đúng. d) Đúng.
a) Áp dụng định lí Pythagore vào tam giác \(EDC\) vuông tại \(D\), có:
\(E{C^2} = D{C^2} + D{E^2}\,\)(định lí Pythagore)
\(E{C^2} = {3^2} + {4^2}\,\)
\(EC = \sqrt {{3^2} + {4^2}\,} = 5\,\,\left( {\rm{m}} \right)\).
Do đó, ý a) đúng.
b) Có \(EB \bot DC,\,\,EB \bot AB\) nên \(CD\parallel AB\).
Do đó, xét tam giác \(EAB\) có: \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) (hệ quả của định lí Thalès).
Do đó, ý b) là sai.
c) Có \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) hay \(\frac{4}{{72}} = \frac{5}{{EA}}\) nên \(AE = \frac{{72 \cdot 5}}{4} = 90\,\,\left( {\rm{m}} \right)\).
Do đó, ý c) là đúng.
d) Xét tam giác \(AEB\) vuông tại \(D\) có: \(A{E^2} = A{B^2} + B{E^2}\) (định lí Pythagore)
Do đó, \(AB = \sqrt {{{90}^2} - {{72}^2}} = 54\,\,\left( {\rm{m}} \right)\).
Vậy chiều cao \(AB\) của tòa nhà là 54 m.
Do đó, ý d) là đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



