Câu hỏi:

04/12/2025 8 Lưu

Mệnh đề nào trong các mệnh đề dưới đây sai?

A. Hàm số \(y = {3^x}\) đồng biến trên \(\mathbb{R}\). 

B. Hàm số \(y = \log x\) đồng biến trên \(\left( {0; + \infty } \right)\).    

C. Hàm số \(y = \ln x\) nghịch biến trên \(\left( { - \infty ;0} \right)\).  

D. Hàm số \(y = {2^x}\) đồng biến trên \(\mathbb{R}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hàm số \(y = \ln x\) đồng biến trên \(\left( {0; + \infty } \right)\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tập xác định của hàm số \(D = \left[ { - \frac{3}{2}; + \infty } \right)\).

Đúng
Sai

b) Nghiệm của phương trình \(f\left( x \right) = 1\) là \(x = 0\).

Đúng
Sai

c) Tập nghiệm của bất phương trình \(f\left( x \right) < 2\) có đúng 3 số nguyên.

Đúng
Sai
d) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên \(\left[ {0;3} \right]\) là 3.
Đúng
Sai

Lời giải

a) Điều kiện \(2x + 3 > 0 \Leftrightarrow x >  - \frac{3}{2}\).

Tập xác định của hàm số \(D = \left( { - \frac{3}{2}; + \infty } \right)\).

b) \(f\left( x \right) = 1\) \( \Leftrightarrow {\log _3}\left( {2x + 3} \right) = 1\)\( \Leftrightarrow 2x + 3 = 3\)\( \Leftrightarrow x = 0\).

c) Ta có \(f\left( x \right) < 2 \Leftrightarrow {\log _3}\left( {2x + 3} \right) < 2\)\( \Leftrightarrow 2x + 3 < 9\)\( \Leftrightarrow x < 3\).

Kết hợp với điều kiện ta có \(S = \left( { - \frac{3}{2};3} \right)\), mà \(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 1;0;1;2} \right\}\).

Vậy có 4 giá trị nguyên của \(x\) để \(f\left( x \right) < 2\).

d) Vì hàm số \(y = f\left( x \right) = {\log _3}\left( {2x + 3} \right)\) đồng biến trên \(\left( { - \frac{3}{2}; + \infty } \right)\) nên \(\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 0 \right) = 1;\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 3 \right) = 2\).

Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên \(\left[ {0;3} \right]\) là 3.

Đáp án: a) Sai;      b) Đúng;      c) Sai;       d) Đúng.

Lời giải

Ta có \({4^x} + {4^{ - x}} = 7\)\( \Leftrightarrow {2^{2x}} + {2^{ - 2x}} = 7\)\( \Leftrightarrow {\left( {{2^x}} \right)^2} + {\left( {{2^{ - x}}} \right)^2} = 7\)\( \Leftrightarrow {\left( {{2^x} + {2^{ - x}}} \right)^2} - 2 = 7\)\( \Leftrightarrow {\left( {{2^x} + {2^{ - x}}} \right)^2} = 9\)

\( \Leftrightarrow {2^x} + {2^{ - x}} = 3\).

Vậy \(P = \frac{{5 + {2^x} + {2^{ - x}}}}{{8 - 4 \cdot {2^x} - 4 \cdot {2^{ - x}}}}\)\( = \frac{{5 + 3}}{{8 - 4 \cdot 3}} =  - 2\).

Trả lời: −2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x\).  

B. \({x^{1 - \sqrt 3 }}\).  
C. \({x^{\sqrt 3 }}\).
D. \({x^{2\sqrt 3  - 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP