Cho ba đường thẳng \(\left( {{d_1}} \right):y = - 2x,\) \(\left( {{d_2}} \right):y = 1,5x + 7\) và \(\left( {{d_3}} \right):y = - 2mx + 5.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Đúng. c) Sai. d) Sai.
a) Hoành độ giao điểm của \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) là nghiệm của phương trình:
\( - 2x = 1,5x + 7\)
\(3,5x = - 7\)
\(x = - 2.\)
Do đó, ý a) là đúng.
b) Thay \(x = - 2\) vào hàm số \(y = - 2x,\) ta được \(y = - 2 \cdot \left( { - 2} \right) = 4.\)
Vậy giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) là \(A\left( { - 2;4} \right).\)
Do đó, ý b) là đúng.
c) Để \(\left( {{d_3}} \right)\) cắt \(\left( {{d_1}} \right)\) thì \( - 2m \ne - 2,\) do đó \(m \ne 1.\)
Để \(\left( {{d_3}} \right)\) cắt \(\left( {{d_2}} \right)\) thì \( - 2m \ne 1,5,\) do đó \(m \ne - \frac{3}{4}.\)
Do đó, ý c) là sai.
d) Khi đó ba đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) và \(\left( {{d_3}} \right)\) cắt nhau tại một điểm thì đường thẳng \(\left( {{d_3}} \right)\) đi qua giao điểm \(A\left( { - 2;4} \right)\) của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right).\)
Do đó \(4 = - 2m \cdot \left( { - 2} \right) + 5\)
\(4m = - 1\)
\(m = - \frac{1}{4}\) (thỏa mãn).
Vậy \(m = - \frac{1}{4}\) thỏa mãn yêu cầu đề bài.
Do đó, ý d) là sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: −3
Thay tọa độ điểm \(A\left( { - m; - 3} \right)\) khi \( - 2.\left( { - m} \right) + 3 = - 3\) hay \(2m = - 6\) nên \(m = - 3.\)
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Sai. c) Đúng. d) Đúng.
a) Áp dụng định lí Pythagore vào tam giác \(EDC\) vuông tại \(D\), có:
\(E{C^2} = D{C^2} + D{E^2}\,\)(định lí Pythagore)
\(E{C^2} = {3^2} + {4^2}\,\)
\(EC = \sqrt {{3^2} + {4^2}\,} = 5\,\,\left( {\rm{m}} \right)\)
Do đó, ý a) là đúng.
b) Có \(EB \bot DC,\,\,EB \bot AB\) nên \(CD\parallel AB\).
Do đó, xét tam giác \(EAB\) có: \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) (hệ quả của định lí Thalès).
Do đó, ý b) là sai.
c) Có \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) hay \(\frac{4}{{72}} = \frac{5}{{EA}}\) nên \(AE = \frac{{72 \cdot 5}}{4} = 90\,\,\left( {\rm{m}} \right)\).
Do đó, ý c) là đúng.
d) Xét tam giác \(AEB\) vuông tại \(D\) có: \(A{E^2} = A{B^2} + B{E^2}\) (định lí Pythagore)
Do đó, \(AB = \sqrt {{{90}^2} - {{72}^2}} = 54\,\,\left( {\rm{m}} \right)\).
Vậy chiều cao \(AB\) của tòa nhà là 54 m.
Do đó, ý d) là đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

