Câu hỏi:

04/12/2025 28 Lưu

Cho hàm số \(\left( d \right):y = \left( {2 - m} \right)x + 3m - 1\).       

a) Điều kiện để hàm số trên là hàm bậc nhất là \(m = 2.\)       
Đúng
Sai
b) Với \(m = - 1\) thì đồ thị hàm số \(\left( d \right)\) đi qua điểm \(A\left( {0;4} \right).\)       
Đúng
Sai
c) Để \(\left( d \right)\) song song với \(\left( {d'} \right):y = - x + m - 3\) thì \(m = 3.\)       
Đúng
Sai
d) Để \(\left( d \right)\) cắt đường thẳng \(\left( {d''} \right):y = - x + 2\) tại một điểm thuộc trục tung thì \(m = 1.\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là:               a) Sai.       b) Sai.       c) Đúng.               d) Đúng.

a) Điều kiện để hàm số trên là hàm số bậc nhất là \(2 - m \ne 0\) suy ra \(m \ne 2\). Do đó ý a) sai.

b) Với \(m = - 1\), ta có: \(\left( d \right):y = 3x - 4\).

Thay \(x = 0,y = 4\) vào \(\left( d \right):y = 3x - 4\), ta được: \(3.0 - 4 = 4\) hay \( - 4 = 4\) (vô lí).

Như vậy, với \(m = - 1\) thì đồ thị hàm số \(\left( d \right)\) không đi qua điểm \(A\left( {0;4} \right).\) Do đó ý b) sai.

c) Để đường thẳng \(\left( d \right)\) song song với \(\left( {d'} \right):y = - x + m - 3\) thì \(\left\{ \begin{array}{l}2 - m = - 1\\3m - 1 \ne m - 3\end{array} \right.\) hay \(\left\{ \begin{array}{l}m = 3\\m \ne - 1\end{array} \right.\).

Như vậy, \(m = 3.\) Do đó ý c) đúng.

d) Nhận thấy đường thẳng \(\left( {d''} \right):y = - x + 2\) luôn cắt trục tung tại điểm có tung độ là \(2.\)

Đường thẳng \(\left( d \right)\) luôn cắt trục tung tại điểm có tung độ là \(3m - 1\).

Do đó, để \(\left( d \right)\) cắt đường thẳng \(\left( {d''} \right):y = - x + 2\) tại một điểm thuộc trục tung thì \(2 = 3m - 1\).

Suy ra \(m = 1.\) Do đó ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: −3

Thay tọa độ điểm \(A\left( { - m; - 3} \right)\) khi \( - 2.\left( { - m} \right) + 3 = - 3\) hay \(2m = - 6\) nên \(m = - 3.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đúng.             b) Sai.          c) Đúng.                           d) Đúng.

a) Áp dụng định lí Pythagore vào tam giác \(EDC\) vuông tại \(D\), có:

\(E{C^2} = D{C^2} + D{E^2}\,\)(định lí Pythagore)

\(E{C^2} = {3^2} + {4^2}\,\)

\(EC = \sqrt {{3^2} + {4^2}\,} = 5\,\,\left( {\rm{m}} \right)\)

Do đó, ý a) là đúng.

b) Có \(EB \bot DC,\,\,EB \bot AB\) nên \(CD\parallel AB\).

Do đó, xét tam giác \(EAB\) có: \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) (hệ quả của định lí Thalès).

Do đó, ý b) là sai.

c) Có \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) hay \(\frac{4}{{72}} = \frac{5}{{EA}}\) nên \(AE = \frac{{72 \cdot 5}}{4} = 90\,\,\left( {\rm{m}} \right)\).

Do đó, ý c) là đúng.

d) Xét tam giác \(AEB\) vuông tại \(D\) có: \(A{E^2} = A{B^2} + B{E^2}\) (định lí Pythagore)

Do đó, \(AB = \sqrt {{{90}^2} - {{72}^2}} = 54\,\,\left( {\rm{m}} \right)\).

Vậy chiều cao \(AB\) của tòa nhà là 54 m.

Do đó, ý d) là đúng.

Câu 3

a) Với \(m \ne 1\) thì đường thẳng \(\left( d \right)\) cắt \(\left( {d'} \right):y = 2mx + 8.\)       
Đúng
Sai
b) Đường thẳng \(\left( d \right)\) đi qua điểm \(A\left( {0;5} \right)\) khi \(m = 3.\)       
Đúng
Sai
c) Với \(m = 5\) thì đường thẳng \(\left( d \right)\) song song với đường thẳng \(y = 2x - 1.\)       
Đúng
Sai
d) Để \(\left( d \right)\) cắt đường thẳng \(y = - x + 9\) tại điểm có tung độ là \(5\) thì \(m = \frac{{12}}{5}.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Số tiền lãi cô Hồng mua trái phiếu chính phủ là \(0,06x\) triệu đồng.       
Đúng
Sai
b) Số tiền lãi cô Hồng mua trái phiếu doanh nghiệp là \(64 + 0,08x\) triệu đồng.
Đúng
Sai
c) Phương trình thu được là \(0,02x - 48 = 54.\)
Đúng
Sai
d) Cô Hồng đã đầu tư 300 triệu đồng vào mua trái phiếu doanh nghiệp.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP