Cho hình bình hành \(ABCD\) có đường phân giác của góc \(A\) cắt \(BD\) tại \(E,\) đường phân giác của góc \(B\) cắt \(AC\) tại \(F.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Đúng. c) Sai. d) Đúng.

a) Vì \(BF\) là tia phân giác của \(\widehat {ABC}\) trong \(\Delta ABC\) nên \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}}.\)
Do đó, ý a) là đúng.
b) Vì \(AE\) là tia phân giác của \(\widehat {DAB}\) trong \(\Delta ABD\) nên \(\frac{{BE}}{{ED}} = \frac{{AB}}{{AD}}.\)
Ta có: \(BC = AD\) (do tứ giác \(ABCD\) là hình bình hành), \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}},\;\frac{{BE}}{{ED}} = \frac{{AB}}{{AD}}\) nên \(\frac{{EB}}{{ED}} = \frac{{FA}}{{FC}}.\)
Do đó, ý b) là đúng.
c) Vì \(\frac{{EB}}{{ED}} = \frac{{FA}}{{FC}}\) nên \(\frac{{BE + DE}}{{ED}} = \frac{{AF + FC}}{{FC}}\) hay \(\frac{{BD}}{{ED}} = \frac{{AC}}{{FC}}.\) Suy ra \(\frac{{2OD}}{{ED}} = \frac{{2OC}}{{FC}}\) hay \(\frac{{OD}}{{ED}} = \frac{{OC}}{{FC}}.\)
Do đó, ý c) là sai.
d) \(\Delta DOC\) có: \(\frac{{OD}}{{ED}} = \frac{{OC}}{{FC}}\) nên \(EF\;{\rm{//}}\;DC\) (Định lí Thalès đảo).
Mà \(DC\;{\rm{//}}\;AB\) (do tứ giác \(ABCD\) là hình bình hành) nên \(EF\;{\rm{//}}\;AB\;{\rm{//}}\;CD.\)
Do đó, ý d) là đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 120
Vì tam giác \(ABC\) có: \(FE\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{FC}} = \frac{{BE}}{{EC}}.\)
Do đó, \(BE = \frac{{AF}}{{FC}} \cdot EC = \frac{{80}}{{40}} \cdot 60 = 120\;\left( {\rm{m}} \right).\)
Vậy khoảng cách giữa hai vị trí \(E\) và \(B\) bằng \(120\;{\rm{m}}{\rm{.}}\)
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Sai. c) Sai. d) Đúng.
a) Để hai đường thẳng \(\left( d \right)\) và \(\left( {d'} \right)\) cắt nhau thì \(3 - m \ne 2m\) hay \(m \ne 1\).
Khi \(m = 3\) thì \(\left( d \right):y = \left( {3 - 3} \right)x - 3 + 5\) hay \(\left( d \right):y = 2\). Do đó ý a) đúng.
b) Lúc này đường thẳng \(\left( d \right):y = 2\) không đi qua điểm điểm \(A\left( {0;5} \right)\). Do đó ý b) sai.
c) Với \(m = 5\) thì ta có \(\left( d \right):y = \left( {3 - 5} \right)x - 5 + 5\) hay \(\left( d \right):y = - 2x\).
Vì \(2 \ne - 2\) nên đường thẳng \(\left( d \right)\) không song song với đường thẳng \(y = 2x - 1.\) Do đó ý c) sai.
d) Thay \(y = 5\) vào \(y = - x + 9\), ta được \(5 = - x + 9\), suy ra \(x = 4.\)
Để \(\left( d \right)\) cắt \(y = - x + 9\) tại điểm có tung độ là \(y = 5\) thì \(\left( d \right)\) đi qua điểm có tọa độ \(\left( {4;5} \right)\).
Thay \(x = 4,y = 5\) vào \(\left( d \right):y = \left( {3 - m} \right)x - m + 5\) ta được:
\(5 = \left( {3 - m} \right).4 - m + 5\) hay \(5m = 12\) suy ra \(m = \frac{{12}}{5}.\) Do đó ý d) đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
