Câu hỏi:

04/12/2025 18 Lưu

Cho hình bình hành \(ABCD\) có đường phân giác của góc \(A\) cắt \(BD\) tại \(E,\) đường phân giác của góc \(B\) cắt \(AC\) tại \(F.\)       

a) \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}}.\)       
Đúng
Sai
b) \(\frac{{EB}}{{ED}} = \frac{{FA}}{{FC}}.\)       
Đúng
Sai
c) \(\frac{{OD}}{{ED}} > \frac{{OC}}{{FC}}.\)       
Đúng
Sai
d) \(EF\;{\rm{//}}\;AB\;{\rm{//}}\;CD.\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: a) Đúng.             b) Đúng.      c) Sai.        d) Đúng.

Cho hình bình hành  ABCD  có đường phân giác của góc  A  cắt  BD  tại  E ,  đường phân giác của góc  B  cắt  AC  tại  F . (ảnh 1)

a) Vì \(BF\) là tia phân giác của \(\widehat {ABC}\) trong \(\Delta ABC\) nên \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}}.\)

Do đó, ý a) là đúng.

b) \(AE\) là tia phân giác của \(\widehat {DAB}\) trong \(\Delta ABD\) nên \(\frac{{BE}}{{ED}} = \frac{{AB}}{{AD}}.\)

Ta có: \(BC = AD\) (do tứ giác \(ABCD\) là hình bình hành), \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}},\;\frac{{BE}}{{ED}} = \frac{{AB}}{{AD}}\) nên \(\frac{{EB}}{{ED}} = \frac{{FA}}{{FC}}.\)

Do đó, ý b) là đúng.

c) Vì \(\frac{{EB}}{{ED}} = \frac{{FA}}{{FC}}\) nên \(\frac{{BE + DE}}{{ED}} = \frac{{AF + FC}}{{FC}}\) hay \(\frac{{BD}}{{ED}} = \frac{{AC}}{{FC}}.\) Suy ra \(\frac{{2OD}}{{ED}} = \frac{{2OC}}{{FC}}\) hay \(\frac{{OD}}{{ED}} = \frac{{OC}}{{FC}}.\)

Do đó, ý c) là sai.

d) \(\Delta DOC\) có: \(\frac{{OD}}{{ED}} = \frac{{OC}}{{FC}}\) nên \(EF\;{\rm{//}}\;DC\) (Định lí Thalès đảo).

\(DC\;{\rm{//}}\;AB\) (do tứ giác \(ABCD\) là hình bình hành) nên \(EF\;{\rm{//}}\;AB\;{\rm{//}}\;CD.\)

Do đó, ý d) là đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: −3

Thay tọa độ điểm \(A\left( { - m; - 3} \right)\) khi \( - 2.\left( { - m} \right) + 3 = - 3\) hay \(2m = - 6\) nên \(m = - 3.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đúng.             b) Sai.          c) Đúng.                           d) Đúng.

a) Áp dụng định lí Pythagore vào tam giác \(EDC\) vuông tại \(D\), có:

\(E{C^2} = D{C^2} + D{E^2}\,\)(định lí Pythagore)

\(E{C^2} = {3^2} + {4^2}\,\)

\(EC = \sqrt {{3^2} + {4^2}\,} = 5\,\,\left( {\rm{m}} \right)\)

Do đó, ý a) là đúng.

b) Có \(EB \bot DC,\,\,EB \bot AB\) nên \(CD\parallel AB\).

Do đó, xét tam giác \(EAB\) có: \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) (hệ quả của định lí Thalès).

Do đó, ý b) là sai.

c) Có \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) hay \(\frac{4}{{72}} = \frac{5}{{EA}}\) nên \(AE = \frac{{72 \cdot 5}}{4} = 90\,\,\left( {\rm{m}} \right)\).

Do đó, ý c) là đúng.

d) Xét tam giác \(AEB\) vuông tại \(D\) có: \(A{E^2} = A{B^2} + B{E^2}\) (định lí Pythagore)

Do đó, \(AB = \sqrt {{{90}^2} - {{72}^2}} = 54\,\,\left( {\rm{m}} \right)\).

Vậy chiều cao \(AB\) của tòa nhà là 54 m.

Do đó, ý d) là đúng.

Câu 3

a) Với \(m \ne 1\) thì đường thẳng \(\left( d \right)\) cắt \(\left( {d'} \right):y = 2mx + 8.\)       
Đúng
Sai
b) Đường thẳng \(\left( d \right)\) đi qua điểm \(A\left( {0;5} \right)\) khi \(m = 3.\)       
Đúng
Sai
c) Với \(m = 5\) thì đường thẳng \(\left( d \right)\) song song với đường thẳng \(y = 2x - 1.\)       
Đúng
Sai
d) Để \(\left( d \right)\) cắt đường thẳng \(y = - x + 9\) tại điểm có tung độ là \(5\) thì \(m = \frac{{12}}{5}.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Số tiền lãi cô Hồng mua trái phiếu chính phủ là \(0,06x\) triệu đồng.       
Đúng
Sai
b) Số tiền lãi cô Hồng mua trái phiếu doanh nghiệp là \(64 + 0,08x\) triệu đồng.
Đúng
Sai
c) Phương trình thu được là \(0,02x - 48 = 54.\)
Đúng
Sai
d) Cô Hồng đã đầu tư 300 triệu đồng vào mua trái phiếu doanh nghiệp.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP