Biết rằng, có tồn tại \(m \in \left( {a;b} \right)\) để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt. Tổng \(a + b\) có giá trị bao nhiêu?
Quảng cáo
Trả lời:
\({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\)\( \Leftrightarrow 2 \cdot {2^{2x}} - {2^3} \cdot {2^x} - 2m = 0\)\( \Leftrightarrow 2 \cdot {2^{2x}} - 8 \cdot {2^x} - 2m = 0\).
Đặt \(t = {2^x},t > 0\). Khi đó phương trình trở thành \(2{t^2} - 8t - 2m = 0\) (*).
Để phương trình có hai nghiệm phân biệt thì phương trình (*) có hai nghiệm dương phân biệt
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = 16 + 4m > 0\\S > 0\\P > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m > - 4\\ - m > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m > - 4\\m < 0\end{array} \right.\)\( \Leftrightarrow - 4 < m < 0\).
Suy ra \(a = - 4;b = 0\). Do đó \(a + b = - 4\).
Trả lời: −4.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Tập xác định của hàm số \(D = \left[ { - \frac{3}{2}; + \infty } \right)\).
b) Nghiệm của phương trình \(f\left( x \right) = 1\) là \(x = 0\).
c) Tập nghiệm của bất phương trình \(f\left( x \right) < 2\) có đúng 3 số nguyên.
Lời giải
a) Điều kiện \(2x + 3 > 0 \Leftrightarrow x > - \frac{3}{2}\).
Tập xác định của hàm số \(D = \left( { - \frac{3}{2}; + \infty } \right)\).
b) \(f\left( x \right) = 1\) \( \Leftrightarrow {\log _3}\left( {2x + 3} \right) = 1\)\( \Leftrightarrow 2x + 3 = 3\)\( \Leftrightarrow x = 0\).
c) Ta có \(f\left( x \right) < 2 \Leftrightarrow {\log _3}\left( {2x + 3} \right) < 2\)\( \Leftrightarrow 2x + 3 < 9\)\( \Leftrightarrow x < 3\).
Kết hợp với điều kiện ta có \(S = \left( { - \frac{3}{2};3} \right)\), mà \(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 1;0;1;2} \right\}\).
Vậy có 4 giá trị nguyên của \(x\) để \(f\left( x \right) < 2\).
d) Vì hàm số \(y = f\left( x \right) = {\log _3}\left( {2x + 3} \right)\) đồng biến trên \(\left( { - \frac{3}{2}; + \infty } \right)\) nên \(\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 0 \right) = 1;\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 3 \right) = 2\).
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên \(\left[ {0;3} \right]\) là 3.
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Câu 2
A. \(\frac{{13}}{6}\).
Lời giải
Ta có \(\frac{{\sqrt {2\sqrt[3]{4}} }}{{{{16}^{0,75}}}}\)\( = \frac{{\sqrt {2 \cdot {2^{\frac{2}{3}}}} }}{{{2^{4 \cdot }}^{0,75}}}\)\( = \frac{{\sqrt {{2^{\frac{5}{3}}}} }}{{{2^3}}}\)\[ = \frac{{{2^{\frac{5}{6}}}}}{{{2^3}}}\]\[ = {2^{\frac{{ - 13}}{6}}}\]. Suy ra \(m = - \frac{{13}}{6}\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(x = \frac{1}{2}\left( {3 - {{\log }_5}4} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
