Câu hỏi:

04/12/2025 11 Lưu

Giả sử giá trị còn lại (tính theo triệu đồng) của một chiếc ô tô sau \(t\) năm sử dụng được mô hình hóa bằng công thức \(V\left( t \right) = A \cdot {\left( {0,905} \right)^t}\), trong đó \(A\) là giá xe (tính theo triệu đồng) lúc mới mua. Hỏi nếu theo mô hình này, sau bao nhiêu năm sử dụng thì giá trị của chiếc xe đó còn lại không quá 300 triệu đồng? (làm tròn kết quả đến hàng đơn vị). Biết \(A = 780\) triệu đồng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(V\left( t \right) \le 300 \Leftrightarrow 780 \cdot {\left( {0,905} \right)^t} \le 300\)\( \Leftrightarrow {\left( {0,905} \right)^t} \le \frac{5}{{13}}\)\( \Leftrightarrow t \ge {\log _{0,905}}\frac{5}{{13}} \approx 9,6\) (do 0 < 0,905 < 1).

Vậy sau khoảng 10 năm sử dụng, giá trị chiếc xe đó còn lại không quá 300 triệu đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tập xác định của hàm số \(D = \left[ { - \frac{3}{2}; + \infty } \right)\).

Đúng
Sai

b) Nghiệm của phương trình \(f\left( x \right) = 1\) là \(x = 0\).

Đúng
Sai

c) Tập nghiệm của bất phương trình \(f\left( x \right) < 2\) có đúng 3 số nguyên.

Đúng
Sai
d) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên \(\left[ {0;3} \right]\) là 3.
Đúng
Sai

Lời giải

a) Điều kiện \(2x + 3 > 0 \Leftrightarrow x >  - \frac{3}{2}\).

Tập xác định của hàm số \(D = \left( { - \frac{3}{2}; + \infty } \right)\).

b) \(f\left( x \right) = 1\) \( \Leftrightarrow {\log _3}\left( {2x + 3} \right) = 1\)\( \Leftrightarrow 2x + 3 = 3\)\( \Leftrightarrow x = 0\).

c) Ta có \(f\left( x \right) < 2 \Leftrightarrow {\log _3}\left( {2x + 3} \right) < 2\)\( \Leftrightarrow 2x + 3 < 9\)\( \Leftrightarrow x < 3\).

Kết hợp với điều kiện ta có \(S = \left( { - \frac{3}{2};3} \right)\), mà \(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 1;0;1;2} \right\}\).

Vậy có 4 giá trị nguyên của \(x\) để \(f\left( x \right) < 2\).

d) Vì hàm số \(y = f\left( x \right) = {\log _3}\left( {2x + 3} \right)\) đồng biến trên \(\left( { - \frac{3}{2}; + \infty } \right)\) nên \(\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 0 \right) = 1;\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 3 \right) = 2\).

Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên \(\left[ {0;3} \right]\) là 3.

Đáp án: a) Sai;      b) Đúng;      c) Sai;       d) Đúng.

Lời giải

Ta có \({4^x} + {4^{ - x}} = 7\)\( \Leftrightarrow {2^{2x}} + {2^{ - 2x}} = 7\)\( \Leftrightarrow {\left( {{2^x}} \right)^2} + {\left( {{2^{ - x}}} \right)^2} = 7\)\( \Leftrightarrow {\left( {{2^x} + {2^{ - x}}} \right)^2} - 2 = 7\)\( \Leftrightarrow {\left( {{2^x} + {2^{ - x}}} \right)^2} = 9\)

\( \Leftrightarrow {2^x} + {2^{ - x}} = 3\).

Vậy \(P = \frac{{5 + {2^x} + {2^{ - x}}}}{{8 - 4 \cdot {2^x} - 4 \cdot {2^{ - x}}}}\)\( = \frac{{5 + 3}}{{8 - 4 \cdot 3}} =  - 2\).

Trả lời: −2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(P =  - 1\). 

B. \(P = 0\).   
C. \(P = 2\).
  D. \(P = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = {\left( {\frac{e}{2}} \right)^x}\).  

B. \(y = {\log _3}x\).
C. \(y = {\log _{\frac{1}{4}}}x\). 
D. \(y = {\left( {\frac{\pi }{4}} \right)^x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP