Câu hỏi:

04/12/2025 9 Lưu

Xác định \[a,{\rm{ }}b\] của hàm số \[y = ax + b{\rm{ }}\left( {a \ne 0} \right)\] sao cho đồ thị hàm số:

a) Đi qua điểm A3;1 và B2;5.

b) Cắt trục tung tại điểm có tung độ bằng 5 và cắt trục hoành tại điểm có hoành độ bằng \[--1.\]

c) Đi qua giao điểm của hai đường thẳng \[\left( {{d_1}} \right):y = x + 1\]d2:y=2x3, và đồ thị hàm số song song với đường thẳng \(y = \frac{3}{2}x - 24.\)

d) Vuông góc với đường thẳng \(y = - \frac{1}{4}x + 9\) và cắt trục tung tại điểm có tung độ bằng \[5.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Đồ thị hàm số \[y = ax + b{\rm{ }}\left( {a \ne 0} \right)\] đi qua điểm \[A\left( {3;--1} \right)\] nên ta có:

\[ - 1 = a \cdot 3 + b,\] do đó \(b = - 3a - 1.\)

Đồ thị hàm số \[y = ax + b{\rm{ }}\left( {a \ne 0} \right)\] đi qua điểm \[B\left( {2;--5} \right)\] nên ta có:

\[ - 5 = a \cdot 2 + b\,\,\left( * \right)\]

Thay \(b = - 3a - 1\) vào \(\left( * \right)\) ta được:

\[ - 5 = a \cdot 2 - 3a - 1\]

\(a = 4.\)

Suy ra \(b = - 3 \cdot 4 - 1 = - 13.\)

Vậy \(a = 4\)\(b = - 13.\)

b) Đồ thị hàm số \[y = ax + b{\rm{ }}\left( {a \ne 0} \right)\] cắt trục tung tại điểm có tung độ bằng 5 nên ta có:

\(5 = a \cdot 0 + b,\) do đó \(b = 5.\) Khi đó ta có hàm số \(y = ax + 5.\)

Đồ thị hàm số \[y = ax + 5{\rm{ }}\left( {a \ne 0} \right)\] cắt trục hoành tại điểm có hoành độ bằng \( - 1\) nên ta có: \(0 = a \cdot \left( { - 1} \right) + 5,\) do đó \(a = 5.\)

Vậy \(a = 5\)\(b = 5.\)

c) Do đồ thị hàm số \[y = ax + b{\rm{ }}\left( {a \ne 0} \right)\] song song với đường thẳng \(y = \frac{3}{2}x - 24,\) nên ta có \(a = \frac{3}{2}\)\(b \ne - 24.\) Khi đó ta có hàm số \[y = \frac{3}{2}x + b{\rm{ }}\left( {b \ne - 24} \right).\]

Hoành độ giao điểm của \[\left( {{d_1}} \right):y = x + 1\]\[\left( {{d_2}} \right):y = 2x--3\] là nghiệm của phương trình: \(x + 1 = 2x - 3\)

\(x = 4.\)

Thay \(x = 4\) vào hàm số \(y = x + 1\) ta được \(y = 4 + 1 = 5.\)

Do đó hai đường thẳng \(\left( {{d_1}} \right)\)\(\left( {{d_2}} \right)\) cắt nhau tại điểm \(\left( {4;5} \right).\)

Do đường thẳng \[y = \frac{3}{2}x + b{\rm{ }}\left( {b \ne - 24} \right)\] đi qua điểm \(\left( {4;5} \right)\) nên ta có:

\[5 = \frac{3}{2} \cdot 4 + b,\] do đó \(b = - 1\) (thỏa mãn).

Vậy \(a = \frac{3}{2}\)\(b = - 1.\)

d) Do đường thẳng \[y = ax + b{\rm{ }}\left( {a \ne 0} \right)\] vuông góc với đường thẳng \(y = - \frac{1}{4}x + 9\) nên ta có \(a \cdot \left( { - \frac{1}{4}} \right) = - 1,\) suy ra \(a = 4\) (thỏa mãn). Khi đó ta có hàm số \(y = 4x + b.\)

Đường thẳng \(y = 4x + b\) cắt trục tung tại điểm có tung độ bằng 5 nên ta có:

\(5 = 4 \cdot 0 + b,\) do đó \(b = 5.\)

Vậy \(a = 4\)\(b = 5.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

g) \(\frac{{7x - 1}}{6} = \frac{{16 - x}}{5} - 2x\)

\(\frac{{5\left( {7x - 1} \right)}}{{30}} = \frac{{6\left( {16 - x} \right)}}{{30}} - \frac{{2x \cdot 30}}{{30}}\)

\(35x - 5 = 96 - 6x - 60x\)

\(35x + 6x + 60x = 96 + 5\)

\(101x = 101\)

 \(x = 1.\)

Vậy phương trình đã cho có nghiệm \(x = 1.\)

Lời giải

l) \(x - \frac{{x + \frac{{x + 1}}{5}}}{3} = 1 - \frac{{\frac{{1 - 2x}}{3}}}{5}\)

\(x - \frac{{5x + x + 1}}{5} \cdot \frac{1}{3} = 1 - \frac{{1 - 2x}}{3} \cdot \frac{1}{5}\)

\(x - \frac{{6x + 1}}{{15}} = 1 - \frac{{1 - 2x}}{{15}}\)

\[\frac{{15x - \left( {6x + 1} \right)}}{{15}} = \frac{{15 - \left( {1 - 2x} \right)}}{{15}}\]

\[15x - 6x - 1 = 15 - 1 + 2x\]

\[15x - 6x - 2x = 15 - 1 + 1\]

\[7x = 15\]

\(x = \frac{{15}}{7}.\)

Vậy phương trình đã cho có nghiệm \(x = \frac{{15}}{7}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP