Một người đi xe máy từ A đến B với vận tốc \(40\) km/h. Lúc về người đó tăng vận tốc thêm \(5\) km/h. Tính quãng đường AB, biết thời gian lúc về ít hơn thời gian lúc đi là \(20\) phút.
Một người đi xe máy từ A đến B với vận tốc \(40\) km/h. Lúc về người đó tăng vận tốc thêm \(5\) km/h. Tính quãng đường AB, biết thời gian lúc về ít hơn thời gian lúc đi là \(20\) phút.
Quảng cáo
Trả lời:
Hướng dẫn giải
Đổi \(20\)phút \[ = \frac{1}{3}\] giờ.
Gọi quãng đường AB là \[x\] (km) \(\left( {x > 0} \right).\)
Thời gian đi từ A đến B là \(\frac{x}{{40}}\) (giờ).
Lúc về người đó tăng vận tốc thêm \(5\) km/h nên vận tốc lúc về của người đó là \[40 + 5 = 45\] (km/h).
Thời gian đi từ B về A là \(\frac{x}{{45}}\) (giờ).
Vì thời gian lúc về ít hơn thời gian lúc đi là \(20\) phút \[( = \frac{1}{3}\] giờ) nên ta có phương trình:
\(\frac{x}{{40}} - \frac{x}{{45}} = \frac{1}{3}\)
\(\frac{{9x}}{{360}} - \frac{{8x}}{{360}} = \frac{{120}}{{360}}\)
\(9x - 8x = 120\)
\(x = 120\) (thỏa mãn).
Vậy quãng đường AB là \(120\) km.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Xét phương trình \[\left( {{m^2}--4} \right)x = 2--m.\,\,\left( * \right)\]
Trường hợp 1. \({m^2} - 4 = 0,\) tức là \(\left( {m - 2} \right)\left( {m + 2} \right) = 0,\) nên \(m = 2\) hoặc \(m = - 2.\)
⦁ Nếu \(m = 2,\) thay vào phương trình \(\left( * \right),\) ta được: \(0x = 0.\) Phương trình này vô số nghiệm nên phương trình đã cho vô số nghiệm.
⦁ Nếu \(m = - 2,\) thay vào phương trình \(\left( * \right),\) ta được: \(0x = 4.\) Phương trình này vô nghiệm nên phương trình đã cho vô nghiệm.
Trường hợp 2. \({m^2} - 4 \ne 0,\) tức là \(\left( {m - 2} \right)\left( {m + 2} \right) \ne 0,\) nên \(m \ne 2\) và \(m \ne - 2.\)
Khi đó phương trình \(\left( * \right)\) có nghiệm duy nhất là:
\[x = \frac{{2--m}}{{{m^2}--4}} = \frac{{ - \left( {m - 2} \right)}}{{\left( {m - 2} \right)\left( {m + 2} \right)}} = \frac{{ - 1}}{{m + 2}}.\]
Vậy với \(m = 2,\) phương trình đã cho có vô số nghiệm;
\(m = - 2,\) phương trình đã cho vô nghiệm;
\(m \ne 2\) và \(m \ne - 2,\) phương trình đã cho có nghiệm duy nhất là: \[x = \frac{{ - 1}}{{m + 2}}.\]
Lời giải
g) \(\frac{{7x - 1}}{6} = \frac{{16 - x}}{5} - 2x\)
\(\frac{{5\left( {7x - 1} \right)}}{{30}} = \frac{{6\left( {16 - x} \right)}}{{30}} - \frac{{2x \cdot 30}}{{30}}\)
\(35x - 5 = 96 - 6x - 60x\)
\(35x + 6x + 60x = 96 + 5\)
\(101x = 101\)
\(x = 1.\)
Vậy phương trình đã cho có nghiệm \(x = 1.\)Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.