Câu hỏi:

05/12/2025 51 Lưu

Hai xạ thủ mỗi người một viên đạn bắn vào bia với xác suất bắn trúng của người thứ nhất là \(0,6\) và của người thứ hai là \(0,8\). Tính xác suất để cả hai đều bắn trúng đích.    

A. 0,12.                        
B. 0,48.                       
C. 0,32.                                 
D. 1,4.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố “Người thứ nhất bắn trúng đích”; \(B\) là biến cố “Người thứ hai bắn trung đích”.

\(AB\) là biến cố “Cả hai đều bắn trúng đích”.

Theo đề \(P\left( A \right) = 0,6;P\left( B \right) = 0,8\).

\(A,B\) là hai biến cố độc lập nên \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right) = 0,6 \cdot 0,8 = 0,48\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Xác suất để chọn được 1 học sinh nam và 1 học sinh nữ là \(\frac{{23}}{{49}}\).
Đúng
Sai
b) Xác suất để chọn được học sinh nữ từ lớp \(B\)\(\frac{3}{7}\).
Đúng
Sai
c) Xác suất để chọn được học sinh nam từ lớp \(A\)\(\frac{4}{7}\).
Đúng
Sai
d) Xác suất để chọn được ít nhất một học sinh nữ là \(\frac{{29}}{{49}}\).
Đúng
Sai

Lời giải

Gọi \(A\) là biến cố “Chọn được học sinh nam từ lớp 11A”;

\(B\) là biến cố “Chọn được học sinh nam từ lớp 11B”.

Theo đề ta có \(A,B\) là hai biến cố độc lập và \(P\left( A \right) = \frac{{20}}{{35}} = \frac{4}{7};P\left( B \right) = \frac{{25}}{{35}} = \frac{5}{7}\).

Suy ra \(P\left( {\overline A } \right) = \frac{3}{7};P\left( {\overline B } \right) = \frac{2}{7}\).

a) Xác suất để chọn được 1 học sinh nam và 1 học sinh nữ là

\(P\left( {A\overline B } \right) + P\left( {\overline A B} \right) = \frac{4}{7} \cdot \frac{2}{7} + \frac{3}{7} \cdot \frac{5}{7} = \frac{{23}}{{49}}\).

b) Xác suất để chọn được học sinh nữ từ lớp \(B\)\(P\left( {\overline B } \right) = \frac{2}{7}\).

c) Xác suất để chọn được học sinh nam từ lớp \(A\)\(P\left( A \right) = \frac{4}{7}\).

d) Xác suất để không chọn được học sinh nữ là \(P\left( {AB} \right) = \frac{4}{7} \cdot \frac{5}{7} = \frac{{20}}{{49}}\).

Suy ra xác suất chọn được ít nhất một học sinh nữ là \(P = 1 - \frac{{20}}{{49}} = \frac{{29}}{{49}}\).

Đáp án: a) Đúng;   b) Sai;   c) Đúng;   d) Đúng.

Câu 2

A. \(\frac{1}{{15}}\).   
B. \(\frac{8}{{15}}\).   
C. \(\frac{3}{5}\).                 
D. \(\frac{2}{{15}}\).

Lời giải

\(A,B\) là hai biến cố xung khắc nên \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\)\( \Rightarrow P\left( B \right) = \frac{1}{3} - \frac{1}{5} = \frac{2}{{15}}\). Chọn D.

Câu 4

A. \(A\)\(B\) là hai biến cố xung khắc.      
B. \(A\)\(B\) là hai biến cố không độc lập.                          
C. \(A\)\(B\) là hai biến cố đối.                 
D. \(A\)\(B\) là hai biến cố độc lập.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Số chấm xuất hiện trên con xúc xắc là số chia hết cho 2 và không chia hết cho 3.    
B. Số chấm xuất hiện trên con xúc xắc là số chia hết cho 3 hoặc 2.    
C. Số chấm xuất hiện trên con xúc xắc là số chia hết cho 3 và không chia hết cho 2.    
D. Số chấm xuất hiện trên con xúc xắc là số chia hết cho cả 3 và 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{1}{8}\).            

B. \(\frac{1}{2}\).        
C. \(\frac{1}{{16}}\).           
D. \(\frac{1}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP