Câu hỏi:

05/12/2025 4 Lưu

Ở lúa, hạt gạo đục là tính trạng trội hoàn toàn so với hạt gạo trong. Cho cây lúa có hạt gạo đục thuần chủng thụ phấn với cây lúa có hạt gạo trong được \({F_1}\) toàn là hạt gạo đục. Tiếp tục cho các cây lúa \({F_1}\) thụ phấn với nhau và thu được các hạt gạo mới. Lần lượt chọn ra ngẫu nhiên 2 gạo hạt mới, tính xác suất của biến cố “Có đúng 1 hạt gạo đục trong 2 hạt gạo được lấy ra”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Quy ước gene \(A\): hạt gạo đục và gene \(a\): hạt gạo trong.

Ở thế hệ \({F_2}\) có ba kiểu gene \(AA,Aa,aa\) xuất hiện với tỉ lệ 1 : 2 : 1.

Nên tỉ lệ hạt gạo đục so với hạt gạo trong là 3 : 1.

Gọi \({A_1}\) là biến cố “Hạt gạo lấy ra lần thứ nhất là hạt gạo đục”;

\({A_2}\) là biến cố “Hạt gạo lấy ra lần thứ hai là hạt gạo đục”.

Ta có \({A_1};{A_2}\) là hai biến cố độc lập và \(P\left( {{A_1}} \right) = P\left( {{A_2}} \right) = \frac{3}{4}\).

Xác suất của biến cố “Có đúng 1 hạt gạo đục trong 2 hạt gạo được lấy ra” là

\(P\left( {{A_1}\overline {{A_2}} \cup \overline {{A_1}} {A_2}} \right) = P\left( {{A_1}\overline {{A_2}} } \right) + P\left( {\overline {{A_1}} {A_2}} \right) = P\left( {{A_1}} \right)P\left( {\overline {{A_2}} } \right) + P\left( {\overline {{A_1}} } \right)P\left( {{A_2}} \right) = 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố “Trong hai thẻ rút ra có ít nhất một thẻ đánh số 9”;

\(H\) là biến cố “Thẻ rút ra từ hòm thứ nhất không đánh số 9”;

\(K\) là biến cố “Thẻ rút ra từ hòm thứ hai không đánh số 9”.

Khi đó \(\overline A = HK\). Ta có \(P\left( H \right) = \frac{{12}}{{13}};P\left( K \right) = \frac{{12}}{{13}}\).

\(H\)\(K\) là hai biến cố độc lập nên \(P\left( {\overline A } \right) = P\left( {HK} \right) = P\left( H \right) \cdot P\left( K \right) = \frac{{144}}{{169}}\).

Do đó \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{144}}{{169}} = \frac{{25}}{{169}}\).

Lời giải

Gọi \(A\) là biến cố “Rút được thẻ ghi số chia hết cho 6”; \(B\) là biến cố “Rút được thẻ ghi số chia hết cho 5”.

Từ 1 đến 25 có 4 số chia hết cho 6. Suy ra \(P\left( A \right) = \frac{4}{{25}} \Rightarrow P\left( {\overline A } \right) = \frac{{21}}{{25}}\).

Từ 1 đến 25 có 5 số chia hết cho 5. Suy ra \(P\left( B \right) = \frac{5}{{25}} = \frac{1}{5} \Rightarrow P\left( {\overline B } \right) = \frac{4}{5}\).

Giả sử Bình thắng ở lần rút thứ n.

Vì các lần rút là độc lập với nhau nên xác suất để Bình thắng ở lần rút thứ n là

\({P_n} = {\left( {\frac{{21}}{{25}}} \right)^n} \cdot {\left( {\frac{4}{5}} \right)^{n - 1}} \cdot \frac{1}{5} = \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n}\).

Do đó xác suất để Bình thắng là:

\(P = \frac{1}{4} \cdot \frac{{84}}{{125}} + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^2} + ... + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n} + ...\)\( = \frac{1}{4}\left[ {\left( {\frac{{84}}{{125}}} \right) + {{\left( {\frac{{84}}{{125}}} \right)}^2} + ... + {{\left( {\frac{{84}}{{125}}} \right)}^n} + ...} \right]\).

\(\left( {\frac{{84}}{{125}}} \right),{\left( {\frac{{84}}{{125}}} \right)^2},...,{\left( {\frac{{84}}{{125}}} \right)^n},...\) lập thành một cấp số nhân lùi vô hạn với số hạng đầu \(\frac{{84}}{{125}}\) công bội là \(\frac{{84}}{{125}}\) nên \(P = \frac{1}{4} \cdot \frac{{\frac{{84}}{{125}}}}{{1 - \frac{{84}}{{125}}}} = \frac{{21}}{{41}}\).

Suy ra \(a = 21;b = 41 \Rightarrow a + b = 62\).

Trả lời: 62.

Câu 3

a) Gọi \(C\) là biến cố “Người thứ ba bắn trúng đích” \( \Rightarrow P\left( C \right) = 0,8;P\left( {\overline C } \right) = 0,2\).
Đúng
Sai
b) Gọi \(B\) là biến cố “Người thứ hai bắn trúng đích” \( \Rightarrow P\left( B \right) = 0,7;P\left( {\overline B } \right) = 0,3\).
Đúng
Sai
c) Gọi \(A\) là biến cố “Người thứ nhất bắn trúng đích” \( \Rightarrow P\left( A \right) = 0,5;P\left( {\overline A } \right) = 0,5\).
Đúng
Sai
d) Xác suất để đúng 2 người bắn trúng đích là 0,483.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(P\left( {\overline A B \cup \overline B C} \right) = 0,55\).
Đúng
Sai
b) \(P\left( {A\overline B } \right) = 0,2\).
Đúng
Sai
c) \(P\left( {\overline A \overline B C} \right) = 0,14\).
Đúng
Sai
d) \(P\left( B \right) = 0,24\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(0,2\).                           
B. \(0,3\).                           
C. \(0,4\).                                    
D. \(0,65\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{1}{9}\).              
B. \(\frac{4}{9}\).              
C. \(\frac{2}{9}\).                      
D. \(\frac{4}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP