Câu hỏi:

08/12/2025 19 Lưu

Rút gọn biểu thức \(\left( {x + 1} \right)\left( {x - 1} \right) - \left( {x + 2} \right)\left( {x - 2} \right)\) ta được          

A. \(5.\)                         
B. \(4.\)                         
C. \(3.\)  
D. \( - 3.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có \(\left( {x + 1} \right)\left( {x - 1} \right) - \left( {x + 2} \right)\left( {x - 2} \right) = {x^2} - 1 - \left( {{x^2} - 4} \right) = {x^2} - 1 - {x^2} + 4 = 3.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Ta có \({x^2} - 4 = \left( {x - 2} \right)\left( {x + 2} \right).\)

\({x^2} + x + 1 = {x^2} + 2 \cdot x \cdot \frac{1}{2} + \frac{1}{4} + \frac{3}{4} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4} > 0\) với mọi \(x.\)

Điều kiện xác định của biểu thức \(A\) là \({x^2} - 4 \ne 0,\) \(x - 1 \ne 0\) hay \(x - 2 \ne 0,\) \(x + 2 \ne 0\) và \(x - 1 \ne 0\), tức là \(x \ne 2,x \ne  - 2\) và \(x \ne 1.\)

Vậy điều kiện xác định của biểu thức \(A\) là \(x \ne 2,x \ne  - 2\) và \(x \ne 1.\)

b) Với \(x \ne 2,x \ne  - 2\) và \(x \ne 1,\) ta có:

\[A = \frac{{{x^3} - 1}}{{{x^2} - 4}} \cdot \left( {\frac{1}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}} \right)\]

\( = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{1}{{x - 1}} - \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{{x + 1}}{{{x^2} + x + 1}}\)

\( = \frac{{{x^2} + x + 1}}{{{x^2} - 4}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{{x^2} - 4}}\)

\( = \frac{{{x^2} + x + 1 - \left( {{x^2} - 1} \right)}}{{{x^2} - 4}}\)

\( = \frac{{{x^2} + x + 1 - {x^2} + 1}}{{{x^2} - 4}}\)

\[ = \frac{{x + 2}}{{{x^2} - 4}} = \frac{{x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} = \frac{1}{{x - 2}}.\]

Vậy với \(x \ne 2,x \ne  - 2\) và \(x \ne 1,\) thì \(A = \frac{1}{{x - 2}}.\)

c) Ta có \(\left| {x + 3} \right| = 1\) suy ra \(x + 3 = 1\) hoặc \(x + 3 =  - 1\)

Do đó \(x =  - 2\) (không thỏa mãn điều kiện) hoặc \(x =  - 4\) (thỏa mãn điều kiện)

Thay \(x =  - 4\) vào biểu thức \(A = \frac{1}{{x - 2}},\) ta được: \(A = \frac{1}{{ - 4 - 2}} =  - \frac{1}{6}.\)

Vậy \(A =  - \frac{1}{6}\) khi \(\left| {x + 3} \right| = 1.\)

Lời giải

Hướng dẫn giải

a) \({\left( {x - 2} \right)^2} - \left( {x - 3} \right)\left( {x + 3} \right) = 6\)

\({x^2} - 4x + 4 - \left( {{x^2} - 9} \right) = 6\)

\({x^2} - 4x + 4 - {x^2} + 9 = 6\)

\(\left( {{x^2} - {x^2}} \right) - 4x = 6 - 4 - 9\)

\( - 4x =  - 7\)

\(x = \frac{7}{4}\)

Vậy \(x = \frac{7}{4}.\)

b) \(2x\left( {x - 3} \right) - 5\left( {3 - x} \right) = 0\)

\(2x\left( {x - 3} \right) + 5\left( {x - 3} \right) = 0\)

\(\left( {x - 3} \right)\left( {2x + 5} \right) = 0\)

Suy ra \(x - 3 = 0\) hoặc \(2x + 5 = 0\)

\(x = 3\) hoặc \(2x =  - 5\)

\(x = 3\) hoặc \(x =  - \frac{5}{2}.\)

Vậy \(x \in \left\{ {3; - \frac{5}{2}} \right\}.\)

c) \(2{x^2} - x - 6 = 0\)

\(2{x^2} - 4x + 3x - 6 = 0\)

\(2x\left( {x - 2} \right) + 3\left( {x - 2} \right) = 0\)

\(\left( {x - 2} \right)\left( {2x + 3} \right) = 0\)

Suy ra \(x - 2 = 0\) hoặc \(2x + 3 = 0\)

\(x = 2\) hoặc \(2x =  - 3\)

\(x = 2\) hoặc \(x =  - \frac{3}{2}.\)

Vậy \(x \in \left\{ {2; - \frac{3}{2}} \right\}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{{ - 1 - {x^2}}}{{xy + {y^2}}}.\]                         
B. \[ - \frac{{1 - {x^2}}}{{xy + {y^2}}}.\]                         
C. \[ - \frac{{xy + {y^2}}}{{1 - {x^2}}}.\]                         
D. \[\frac{{xy + {y^2}}}{{ - 1 - {x^2}}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Tứ giác \[ABCD\] là hình thoi có hai đường chéo bằng nhau.
B. Tứ giác \[ABCD\] là hình thoi có một góc vuông.
C. Tứ giác \[ABCD\] là hình thoi có hai đường chéo vuông góc.
D. Tứ giác \[ABCD\] là hình chữ nhật có hai cạnh kề bằng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP