(3,0 điểm)
1) Bạn Hoa dự định làm 4 hộp quà có dạng hình chóp tứ giác đều như hình bên có cạnh đáy \(6{\rm{\;cm,}}\) chiều cao của mặt bên xuất phát từ đỉnh là \(4{\rm{\;cm}}.\) Tính diện tích giấy mà bạn Hoa cần dùng để làm 4 hộp quà đó.

2) Cho tam giác \[ABC\] vuông cân tại \[A.\] Lấy điểm \[M\] thuộc cạnh huyền \[BC.\] Gọi \[D,{\rm{ }}E\] lần lượt là hình chiếu của điểm \[M\] trên đường thẳng \[AB,{\rm{ }}AC.\]
a) Tứ giác \[ADME\] là hình gì? Vì sao?
b) Chứng minh khi điểm \[M\] thay đổi vị trí trên cạnh \[BC\] thì chu vi của tứ giác \[ADME\] không đổi.
c) Điểm \[M\] ở vị trí nào trên cạnh \[BC\] thì \[DE\] có độ dài nhỏ nhất? Tính độ dài nhỏ nhất đó, biết \[AB = 2{\rm{\;cm}}.\]
(3,0 điểm)
|
1) Bạn Hoa dự định làm 4 hộp quà có dạng hình chóp tứ giác đều như hình bên có cạnh đáy \(6{\rm{\;cm,}}\) chiều cao của mặt bên xuất phát từ đỉnh là \(4{\rm{\;cm}}.\) Tính diện tích giấy mà bạn Hoa cần dùng để làm 4 hộp quà đó. |
|
2) Cho tam giác \[ABC\] vuông cân tại \[A.\] Lấy điểm \[M\] thuộc cạnh huyền \[BC.\] Gọi \[D,{\rm{ }}E\] lần lượt là hình chiếu của điểm \[M\] trên đường thẳng \[AB,{\rm{ }}AC.\]
a) Tứ giác \[ADME\] là hình gì? Vì sao?
b) Chứng minh khi điểm \[M\] thay đổi vị trí trên cạnh \[BC\] thì chu vi của tứ giác \[ADME\] không đổi.
c) Điểm \[M\] ở vị trí nào trên cạnh \[BC\] thì \[DE\] có độ dài nhỏ nhất? Tính độ dài nhỏ nhất đó, biết \[AB = 2{\rm{\;cm}}.\]
Câu hỏi trong đề: Bộ 10 đề thi cuối kì Toán 8 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
1) Diện tích xung quanh của một hộp quà là: \({S_{xq}} = \frac{1}{2} \cdot \left( {4 \cdot 6} \right) \cdot 4 = 48{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Diện tích toàn phần của một hộp quà là
Để làm 4 hộp quà bạn Hoa cần dùng diện tích giấy là:
\(4 \cdot 84 = 336{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Vậy diện tích giấy mà bạn Hoa cần dùng để làm 4 hộp quà đó là \(336{\rm{\;c}}{{\rm{m}}^2}.\)
2)

a) Do \[D,{\rm{ }}E\] lần lượt là hình chiếu của điểm \[M\] trên đường thẳng \[AB,{\rm{ }}AC\] nên \[MD \bot AB,\] \[ME \bot AC.\]
Suy ra \[\widehat {ADM} = \widehat {AEM} = 90^\circ \]
Tam giác \[ABC\] vuông cân tại \[A\] nên \[\widehat {BAC} = 90^\circ \]
Tứ giác \[ADME\] có \(\widehat {DAE} = \widehat {AEM} = \widehat {MDA} = 90^\circ \) nên \[ADME\] là hình chữ nhật.
b) Do \[ADME\] là hình chữ nhật nên \[DM\,{\rm{//}}\,AC.\]
Suy ra \(\widehat {BMD} = \widehat {ACB}\) (hai góc so le trong).
Mà \(\widehat {ABC} = \widehat {ACB} = 45^\circ \) (vì tam giác \[ABC\] vuông cân tại \[A),\] suy ra \(\widehat {BMD} = \widehat {ABC} = 45^\circ .\)
Do đó tam giác \[BDM\] cân tại \[D.\] Suy ra \[BD = DM.\]
Chu vi của hình chữ nhật \[ADME\] là: \[2\left( {AD + DM} \right) = 2\left( {AD + BD} \right) = 2AB.\]
Mà \[AB\] không đổi nên chu vi của tứ giác \[ADME\] không đổi.
d) Do \[ADME\] là hình chữ nhật nên \[AM = DE.\]
Suy ra \[DE\] có độ dài nhỏ nhất khi \[AM\] có độ dài nhỏ nhất.
Vậy \[M\] là hình chiếu của \[A\] trên đường thẳng \[BC.\]

Trong tam giác \[ABC\] vuông cân tại \[A,\] ta có:
\[AC = AB = 2{\rm{\;cm}}\] và \[B{C^2} = A{B^2} + A{C^2} = {2^2} + {2^2} = 8\] (định lý Pythagore)
Suy ra \[BC = \sqrt 8 {\rm{\;cm}}\].
Xét \(\Delta ABM\) vuông tại \[M\] và \(\Delta ACM\) vuông tại \[M\] có:
Cạnh \[AM\] chung, \(\widehat {ABM} = \widehat {ACM}\) (do \(\Delta ABC\) vuông cân tại \[A)\]
Do đó \(\Delta ABM = \Delta ACM\) (cạnh góc vuông – góc nhọn kề).
Suy ra \(BM = CM = \frac{{BC}}{2} = \frac{{\sqrt 8 }}{2} = \sqrt 2 {\rm{\;cm}}\).
Xét \(\Delta ABM\) vuông tại \[M\] có \(\widehat {ABM} = 45^\circ \) nên \(\widehat {BAM} = \widehat {ABM} = 45^\circ \).
Suy ra tam giác \[ABM\] vuông cân tại \[M.\]
Do đó \(DE = AM = BM = \sqrt 2 {\rm{\;}}\left( {{\rm{cm}}} \right)\).
Vậy \(DE = \sqrt 2 {\rm{\;cm}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Ta có \({x^2} - 4 = \left( {x - 2} \right)\left( {x + 2} \right).\)
\({x^2} + x + 1 = {x^2} + 2 \cdot x \cdot \frac{1}{2} + \frac{1}{4} + \frac{3}{4} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4} > 0\) với mọi \(x.\)
Điều kiện xác định của biểu thức \(A\) là \({x^2} - 4 \ne 0,\) \(x - 1 \ne 0\) hay \(x - 2 \ne 0,\) \(x + 2 \ne 0\) và \(x - 1 \ne 0\), tức là \(x \ne 2,x \ne - 2\) và \(x \ne 1.\)
Vậy điều kiện xác định của biểu thức \(A\) là \(x \ne 2,x \ne - 2\) và \(x \ne 1.\)
b) Với \(x \ne 2,x \ne - 2\) và \(x \ne 1,\) ta có:
\[A = \frac{{{x^3} - 1}}{{{x^2} - 4}} \cdot \left( {\frac{1}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}} \right)\]
\( = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{1}{{x - 1}} - \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{{x + 1}}{{{x^2} + x + 1}}\)
\( = \frac{{{x^2} + x + 1}}{{{x^2} - 4}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{{x^2} - 4}}\)
\( = \frac{{{x^2} + x + 1 - \left( {{x^2} - 1} \right)}}{{{x^2} - 4}}\)
\( = \frac{{{x^2} + x + 1 - {x^2} + 1}}{{{x^2} - 4}}\)
\[ = \frac{{x + 2}}{{{x^2} - 4}} = \frac{{x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} = \frac{1}{{x - 2}}.\]
Vậy với \(x \ne 2,x \ne - 2\) và \(x \ne 1,\) thì \(A = \frac{1}{{x - 2}}.\)
c) Ta có \(\left| {x + 3} \right| = 1\) suy ra \(x + 3 = 1\) hoặc \(x + 3 = - 1\)
Do đó \(x = - 2\) (không thỏa mãn điều kiện) hoặc \(x = - 4\) (thỏa mãn điều kiện)
Thay \(x = - 4\) vào biểu thức \(A = \frac{1}{{x - 2}},\) ta được: \(A = \frac{1}{{ - 4 - 2}} = - \frac{1}{6}.\)
Vậy \(A = - \frac{1}{6}\) khi \(\left| {x + 3} \right| = 1.\)
Lời giải
Hướng dẫn giải
|
a) \({\left( {x - 2} \right)^2} - \left( {x - 3} \right)\left( {x + 3} \right) = 6\) \({x^2} - 4x + 4 - \left( {{x^2} - 9} \right) = 6\) \({x^2} - 4x + 4 - {x^2} + 9 = 6\) \(\left( {{x^2} - {x^2}} \right) - 4x = 6 - 4 - 9\) \( - 4x = - 7\) \(x = \frac{7}{4}\) Vậy \(x = \frac{7}{4}.\) |
b) \(2x\left( {x - 3} \right) - 5\left( {3 - x} \right) = 0\) \(2x\left( {x - 3} \right) + 5\left( {x - 3} \right) = 0\) \(\left( {x - 3} \right)\left( {2x + 5} \right) = 0\) Suy ra \(x - 3 = 0\) hoặc \(2x + 5 = 0\) \(x = 3\) hoặc \(2x = - 5\) \(x = 3\) hoặc \(x = - \frac{5}{2}.\) Vậy \(x \in \left\{ {3; - \frac{5}{2}} \right\}.\) |
c) \(2{x^2} - x - 6 = 0\)
\(2{x^2} - 4x + 3x - 6 = 0\)
\(2x\left( {x - 2} \right) + 3\left( {x - 2} \right) = 0\)
\(\left( {x - 2} \right)\left( {2x + 3} \right) = 0\)
Suy ra \(x - 2 = 0\) hoặc \(2x + 3 = 0\)
\(x = 2\) hoặc \(2x = - 3\)
\(x = 2\) hoặc \(x = - \frac{3}{2}.\)
Vậy \(x \in \left\{ {2; - \frac{3}{2}} \right\}.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.