Câu hỏi:

08/12/2025 13 Lưu

Chân đường cao của hình chóp tam giác đều là        

A. Trọng tâm của tam giác.                     
B. Trực tâm của tam giác.        
C. Giao điểm của ba đường phân giác.   
D. Cả A, B, C đều đúng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Do mặt đáy của hình chóp tam giác đều là tam giác đều nên chân đường cao của hình chóp tam giác đều là trọng tâm, cũng là trực tâm và giao điểm ba đường phân giác của tam giác.

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Ta có \({x^2} - 4 = \left( {x - 2} \right)\left( {x + 2} \right).\)

\({x^2} + x + 1 = {x^2} + 2 \cdot x \cdot \frac{1}{2} + \frac{1}{4} + \frac{3}{4} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4} > 0\) với mọi \(x.\)

Điều kiện xác định của biểu thức \(A\) là \({x^2} - 4 \ne 0,\) \(x - 1 \ne 0\) hay \(x - 2 \ne 0,\) \(x + 2 \ne 0\) và \(x - 1 \ne 0\), tức là \(x \ne 2,x \ne  - 2\) và \(x \ne 1.\)

Vậy điều kiện xác định của biểu thức \(A\) là \(x \ne 2,x \ne  - 2\) và \(x \ne 1.\)

b) Với \(x \ne 2,x \ne  - 2\) và \(x \ne 1,\) ta có:

\[A = \frac{{{x^3} - 1}}{{{x^2} - 4}} \cdot \left( {\frac{1}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}} \right)\]

\( = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{1}{{x - 1}} - \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{{x + 1}}{{{x^2} + x + 1}}\)

\( = \frac{{{x^2} + x + 1}}{{{x^2} - 4}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{{x^2} - 4}}\)

\( = \frac{{{x^2} + x + 1 - \left( {{x^2} - 1} \right)}}{{{x^2} - 4}}\)

\( = \frac{{{x^2} + x + 1 - {x^2} + 1}}{{{x^2} - 4}}\)

\[ = \frac{{x + 2}}{{{x^2} - 4}} = \frac{{x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} = \frac{1}{{x - 2}}.\]

Vậy với \(x \ne 2,x \ne  - 2\) và \(x \ne 1,\) thì \(A = \frac{1}{{x - 2}}.\)

c) Ta có \(\left| {x + 3} \right| = 1\) suy ra \(x + 3 = 1\) hoặc \(x + 3 =  - 1\)

Do đó \(x =  - 2\) (không thỏa mãn điều kiện) hoặc \(x =  - 4\) (thỏa mãn điều kiện)

Thay \(x =  - 4\) vào biểu thức \(A = \frac{1}{{x - 2}},\) ta được: \(A = \frac{1}{{ - 4 - 2}} =  - \frac{1}{6}.\)

Vậy \(A =  - \frac{1}{6}\) khi \(\left| {x + 3} \right| = 1.\)

Lời giải

Hướng dẫn giải

a) \({\left( {x - 2} \right)^2} - \left( {x - 3} \right)\left( {x + 3} \right) = 6\)

\({x^2} - 4x + 4 - \left( {{x^2} - 9} \right) = 6\)

\({x^2} - 4x + 4 - {x^2} + 9 = 6\)

\(\left( {{x^2} - {x^2}} \right) - 4x = 6 - 4 - 9\)

\( - 4x =  - 7\)

\(x = \frac{7}{4}\)

Vậy \(x = \frac{7}{4}.\)

b) \(2x\left( {x - 3} \right) - 5\left( {3 - x} \right) = 0\)

\(2x\left( {x - 3} \right) + 5\left( {x - 3} \right) = 0\)

\(\left( {x - 3} \right)\left( {2x + 5} \right) = 0\)

Suy ra \(x - 3 = 0\) hoặc \(2x + 5 = 0\)

\(x = 3\) hoặc \(2x =  - 5\)

\(x = 3\) hoặc \(x =  - \frac{5}{2}.\)

Vậy \(x \in \left\{ {3; - \frac{5}{2}} \right\}.\)

c) \(2{x^2} - x - 6 = 0\)

\(2{x^2} - 4x + 3x - 6 = 0\)

\(2x\left( {x - 2} \right) + 3\left( {x - 2} \right) = 0\)

\(\left( {x - 2} \right)\left( {2x + 3} \right) = 0\)

Suy ra \(x - 2 = 0\) hoặc \(2x + 3 = 0\)

\(x = 2\) hoặc \(2x =  - 3\)

\(x = 2\) hoặc \(x =  - \frac{3}{2}.\)

Vậy \(x \in \left\{ {2; - \frac{3}{2}} \right\}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(5.\)                         
B. \(4.\)                         
C. \(3.\)  
D. \( - 3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Tứ giác \[ABCD\] là hình thoi có hai đường chéo bằng nhau.
B. Tứ giác \[ABCD\] là hình thoi có một góc vuông.
C. Tứ giác \[ABCD\] là hình thoi có hai đường chéo vuông góc.
D. Tứ giác \[ABCD\] là hình chữ nhật có hai cạnh kề bằng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\frac{{ - 1 - {x^2}}}{{xy + {y^2}}}.\]                         
B. \[ - \frac{{1 - {x^2}}}{{xy + {y^2}}}.\]                         
C. \[ - \frac{{xy + {y^2}}}{{1 - {x^2}}}.\]                         
D. \[\frac{{xy + {y^2}}}{{ - 1 - {x^2}}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP