Câu hỏi:

09/12/2025 6 Lưu

Cho hàm số \(y = f\left( x \right)\) là hàm số liên tục trên đoạn \(\left[ {a;b} \right]\). Giả sử \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\). Hiệu số nào sau đây được gọi là tích phân từ \(a\) đến \(b\)(hay tích phân xác định trên đoạn \(\left[ {a;b} \right]\)) của hàm số \(f\left( x \right)\).    

A. \(f\left( b \right) - f\left( a \right)\).  
B. \(F\left( b \right) - F\left( a \right)\).     
C. \(f\left( a \right) - f\left( b \right)\).                      
D. \(F\left( a \right) - F\left( b \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có \(\int\limits_a^b {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích miếng tôn hình tròn là \({S_1} = \pi {R^2} = 25\pi \left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Chọn hệ trục tọa độ \(Oxy\) như hình vẽ

Một người có miếng tôn hình tròn có bán kính bằng 5 m. Người này tính trang trí sơn vẽ trên tấm tôn đó, biết mỗi mét vuông sơn hết 100 nghìn đồng. Tuy nhiên, cần có một khoảng trống để treo tấm tôn nên người này bớt lại một phần tấm tôn nhỏ (ảnh 2)

Phương trình của đường tròn tâm \(O\), bán kính bằng 5 là \({x^2} + {y^2} = 25\).

Phương trình nửa phía trên trục hoành của đường tròn là \(y = \sqrt {25 - {x^2}} \).

\(AB = 6 \Rightarrow {y_A} = 3 \Rightarrow {x_A} = 4\).

Vậy diện tích phần tấm trống là \({S_2} = 2\int\limits_4^5 {\sqrt {25 - {x^2}} } dx\).

Diện tích phần tấm tôn trang trí là \(S = {S_1} - {S_2} = 25\pi - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \).

Vậy số tiền cần trả là \(100.\left( {25\pi - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} } \right) \approx 7445\) nghìn đồng.

Câu 2

A. \(A = \frac{{5187}}{2}\).                    
B. \(A = 5127\).                         
C. \(A = \frac{{21}}{2}\).          
D. \(A = \frac{{3093}}{5}\).

Lời giải

Đáp án đúng là: A

\(A = \int\limits_2^5 {{x^5}dx} = \left. {\frac{{{x^6}}}{6}} \right|_2^5 = \frac{{5187}}{2}\).

Câu 3

A. \[\int\limits_a^b {f(x){\rm{d}}x = } \int\limits_a^c {f(x){\rm{d}}x} + \int\limits_c^b {f(x){\rm{d}}x} ,\left( {c \in \left[ {a;b} \right]} \right).\]                           
B. \[\int\limits_a^b {f(x){\rm{d}}x = - \int\limits_b^a {f(x){\rm{d}}x} } .\]    
C. \[\int\limits_a^c {f(x){\rm{d}}x - } \int\limits_c^b {f(x){\rm{d}}x} = \int\limits_a^b {f(x){\rm{d}}x} ,\left( {c \in \left[ {a;b} \right]} \right).\]                           
D. \[\int\limits_a^a {f(x){\rm{d}}x} = 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP