Câu hỏi:

09/12/2025 3 Lưu

Trong mặt phẳng với hệ trục tọa độ \(Oxyz\), cho mặt phẳng \(\left( \alpha \right):2x - y + 3z = 0\). Trong các điểm cho sau, điểm nào không thuộc mặt phẳng \(\left( \alpha \right)\)?    

A. \(A\left( { - 1;3;2} \right)\).              
B. \(B\left( {0;0;0} \right)\).                      
C. \(C\left( {1; - 1; - 1} \right)\).                      
D. \(D\left( {2; - 5; - 3} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Thay tọa độ điểm \(A\left( { - 1;3;2} \right)\) vào phương trình mặt phẳng \(\left( \alpha \right)\) ta được:

\(2.\left( { - 1} \right) - 3 + 3.2 = 1 \ne 0\). Do đó \(A \notin \left( \alpha \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích miếng tôn hình tròn là \({S_1} = \pi {R^2} = 25\pi \left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Chọn hệ trục tọa độ \(Oxy\) như hình vẽ

Một người có miếng tôn hình tròn có bán kính bằng 5 m. Người này tính trang trí sơn vẽ trên tấm tôn đó, biết mỗi mét vuông sơn hết 100 nghìn đồng. Tuy nhiên, cần có một khoảng trống để treo tấm tôn nên người này bớt lại một phần tấm tôn nhỏ (ảnh 2)

Phương trình của đường tròn tâm \(O\), bán kính bằng 5 là \({x^2} + {y^2} = 25\).

Phương trình nửa phía trên trục hoành của đường tròn là \(y = \sqrt {25 - {x^2}} \).

\(AB = 6 \Rightarrow {y_A} = 3 \Rightarrow {x_A} = 4\).

Vậy diện tích phần tấm trống là \({S_2} = 2\int\limits_4^5 {\sqrt {25 - {x^2}} } dx\).

Diện tích phần tấm tôn trang trí là \(S = {S_1} - {S_2} = 25\pi - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \).

Vậy số tiền cần trả là \(100.\left( {25\pi - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} } \right) \approx 7445\) nghìn đồng.

Câu 2

A. \(A = \frac{{5187}}{2}\).                    
B. \(A = 5127\).                         
C. \(A = \frac{{21}}{2}\).          
D. \(A = \frac{{3093}}{5}\).

Lời giải

Đáp án đúng là: A

\(A = \int\limits_2^5 {{x^5}dx} = \left. {\frac{{{x^6}}}{6}} \right|_2^5 = \frac{{5187}}{2}\).

Câu 3

A. \[\int\limits_a^b {f(x){\rm{d}}x = } \int\limits_a^c {f(x){\rm{d}}x} + \int\limits_c^b {f(x){\rm{d}}x} ,\left( {c \in \left[ {a;b} \right]} \right).\]                           
B. \[\int\limits_a^b {f(x){\rm{d}}x = - \int\limits_b^a {f(x){\rm{d}}x} } .\]    
C. \[\int\limits_a^c {f(x){\rm{d}}x - } \int\limits_c^b {f(x){\rm{d}}x} = \int\limits_a^b {f(x){\rm{d}}x} ,\left( {c \in \left[ {a;b} \right]} \right).\]                           
D. \[\int\limits_a^a {f(x){\rm{d}}x} = 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[V = \int\limits_{ - 1}^3 {{{\left( {\sqrt 2 } \right)}^x}{\rm{d}}x} \].                            
B. \[V = \pi \int\limits_{ - 1}^3 {{2^x}{\rm{d}}x} \].   
C. \[V = \pi \int\limits_{ - 1}^3 {{{\left( {\sqrt 2 } \right)}^x}{\rm{d}}x} \]. 
D. \[V = \int\limits_{ - 1}^3 {{2^x}{\rm{d}}x} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP