Trong không gian \(Oxyz\), cho hai mặt phẳng \(\left( \alpha \right):x + 2y - z - 1 = 0\) và \(\left( \beta \right):2x + 4y - mz + 2 = 0\). Tìm \(m\) để \(\left( \alpha \right)\) và \(\left( \beta \right)\) song song với nhau.
Trong không gian \(Oxyz\), cho hai mặt phẳng \(\left( \alpha \right):x + 2y - z - 1 = 0\) và \(\left( \beta \right):2x + 4y - mz + 2 = 0\). Tìm \(m\) để \(\left( \alpha \right)\) và \(\left( \beta \right)\) song song với nhau.
Quảng cáo
Trả lời:
Trả lời: 2
Ta có \(\overrightarrow {{n_\alpha }} = \left( {1;2; - 1} \right),\overrightarrow {{n_\beta }} = \left( {2;4; - m} \right)\).
Để \(\left( \alpha \right)//\left( \beta \right)\) thì \(\frac{1}{2} = \frac{2}{4} = \frac{{ - 1}}{{ - m}} \ne - \frac{1}{2} \Rightarrow m = 2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 8,5
Ta có \(I = \int\limits_{ - 1}^2 {\left[ {x + 2f\left( x \right) - 3g\left( x \right)} \right]dx} \)\( = \int\limits_{ - 1}^2 {xdx} + 2\int\limits_{ - 1}^2 {f\left( x \right)dx} - 3\int\limits_{ - 1}^2 {g\left( x \right)dx} \)
\( = \left. {\frac{{{x^2}}}{2}} \right|_{ - 1}^2 + 2\int\limits_{ - 1}^2 {f\left( x \right)dx} - 3\int\limits_{ - 1}^2 {g\left( x \right)dx} \)\( = \frac{3}{2} + 2.2 - 3.\left( { - 1} \right) = \frac{{17}}{2} = 8,5\).
Lời giải
Diện tích của hình chữ nhật là \(4.6 = 24\)(m2).
Chọn hệ trục tọa độ \(Oxy\) như hình vẽ

Vì Parabol đối xứng qua Oy nên có dạng: \(\left( P \right):y = a{x^2} + c\).
Vì \(\left( P \right)\) đi qua \(B\left( {4;0} \right)\) và \(N\left( {2;6} \right)\) nên \(\left( P \right):y = - \frac{1}{2}{x^2} + 8\).
Diện tích hình phẳng giới hạn bởi \(\left( P \right)\) và trục \(Ox\) là: \({S_1} = 2\int\limits_0^4 {\left( { - \frac{1}{2}{x^2} + 8} \right)dx} = \frac{{128}}{3}\) (m2).
Diện tích phần phía ngoài phông để trang trí hoa là \(S = {S_1} - {S_{MNPQ}} = \frac{{128}}{3} - 24 = \frac{{56}}{3} \approx 18,7\) m2.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
