Câu hỏi:

09/12/2025 61 Lưu

Diện tích hình phẳng \(S\) giới hạn bởi các đồ thị hàm số \(y = {x^3},y = 2 - x\) và trục \(Ox\)như hình vẽ được tính bởi công thức nào?     
Đáp án đúng là: A (ảnh 1)

A. \(S = \int\limits_0^2 {\left| {\left( {2 - x} \right) - {x^3}} \right|dx} \).    
B. \(S = \int\limits_0^1 {{x^3}dx} + \int\limits_1^2 {\left( {x - 2} \right)dx} \).    
C. \(S = \int\limits_0^2 {\left| {{x^3} - \left( {2 - x} \right)} \right|} dx\).                                                    
D. \(S = \frac{1}{2} + \int\limits_0^1 {{x^3}dx} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có \(S = \int\limits_0^1 {\left| {{x^3}} \right|dx} + \int\limits_1^2 {\left| {2 - x} \right|dx} \)\( = \int\limits_0^1 {{x^3}dx} + \int\limits_1^2 {\left( {2 - x} \right)dx} = \frac{1}{2} + \int\limits_0^1 {{x^3}dx} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 8,5

Ta có \(I = \int\limits_{ - 1}^2 {\left[ {x + 2f\left( x \right) - 3g\left( x \right)} \right]dx} \)\( = \int\limits_{ - 1}^2 {xdx} + 2\int\limits_{ - 1}^2 {f\left( x \right)dx} - 3\int\limits_{ - 1}^2 {g\left( x \right)dx} \)

\( = \left. {\frac{{{x^2}}}{2}} \right|_{ - 1}^2 + 2\int\limits_{ - 1}^2 {f\left( x \right)dx} - 3\int\limits_{ - 1}^2 {g\left( x \right)dx} \)\( = \frac{3}{2} + 2.2 - 3.\left( { - 1} \right) = \frac{{17}}{2} = 8,5\).

Câu 2

A. \(\pi \int\limits_0^1 {{e^x}dx} \).     
B. \(\int\limits_0^1 {{e^x}dx} \).               
C. \(\pi \int\limits_0^1 {{e^{2x}}dx} \).    
D. \(\int\limits_0^1 {{e^{2x}}dx} \).

Lời giải

Đáp án đúng là: C

\(V = \pi \int\limits_0^1 {{e^{2x}}dx} \).

Câu 5

A. \(7\).                                                    
B. \(3\).      
C. \(5\).          
D. \(10\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2x - y + 3z + 9 = 0\).                        
B. \(2x - y + 3z - 9 = 0\).        
C. \(2x + y + 3z - 3 = 0\).              
D. \(2x + y + 3z + 3 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP