Diện tích hình phẳng \(S\) giới hạn bởi các đồ thị hàm số \(y = {x^3},y = 2 - x\) và trục \(Ox\)như hình vẽ được tính bởi công thức nào?

Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có \(S = \int\limits_0^1 {\left| {{x^3}} \right|dx} + \int\limits_1^2 {\left| {2 - x} \right|dx} \)\( = \int\limits_0^1 {{x^3}dx} + \int\limits_1^2 {\left( {2 - x} \right)dx} = \frac{1}{2} + \int\limits_0^1 {{x^3}dx} \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 8,5
Ta có \(I = \int\limits_{ - 1}^2 {\left[ {x + 2f\left( x \right) - 3g\left( x \right)} \right]dx} \)\( = \int\limits_{ - 1}^2 {xdx} + 2\int\limits_{ - 1}^2 {f\left( x \right)dx} - 3\int\limits_{ - 1}^2 {g\left( x \right)dx} \)
\( = \left. {\frac{{{x^2}}}{2}} \right|_{ - 1}^2 + 2\int\limits_{ - 1}^2 {f\left( x \right)dx} - 3\int\limits_{ - 1}^2 {g\left( x \right)dx} \)\( = \frac{3}{2} + 2.2 - 3.\left( { - 1} \right) = \frac{{17}}{2} = 8,5\).
Câu 2
Lời giải
Đáp án đúng là: C
\(V = \pi \int\limits_0^1 {{e^{2x}}dx} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
