Câu hỏi:

10/12/2025 6 Lưu

Một hộp phấn không bụi có dạng hình hộp chữ nhật, chiều cao hộp phấn bằng \(8,2\;cm\) và đáy của nó có hai kích thước là \(8,5\;cm;10,5\;cm\) (xem hình vẽ sau). Tìm góc phẳng nhị diện \(\left[ {A,{B^\prime }{D^\prime },{A^\prime }} \right]\) (tính theo độ, làm tròn kết quả đến hàng phần chục).
Một hộp phấn không bụi có dạng hình hộp chữ nhật, chiều cao hộp phấn bằng 8,2cm và đáy của nó có hai kích thước là 8,5cm ;10,5cm (xem hình vẽ sau). Tìm góc phẳng nhị diện [A,B'D',A'] (tính theo độ, làm tròn kết quả đến hàng phần chục).  (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \( \approx {51,14^^\circ }\)

Lời giải

Trong mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }{D^\prime }} \right)\), kẻ \({A^\prime }H \bot {B^\prime }{D^\prime }\) tại \(H\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{{B^\prime }{D^\prime } \bot {A^\prime }H}\\{{B^\prime }{D^\prime } \bot A{A^\prime }\left( {{\rm{do }}A{A^\prime } \bot \left( {{A^\prime }{B^\prime }{C^\prime }{D^\prime }} \right)} \right)}\end{array} \Rightarrow {B^\prime }{D^\prime } \bot \left( {A{A^\prime }H} \right) \Rightarrow {B^\prime }{D^\prime } \bot AH} \right.\).

Do đó \(\widehat {AH{A^\prime }}\) là góc phẳng nhị diện \(\left[ {A,{B^\prime }{D^\prime },{A^\prime }} \right]\).

Một hộp phấn không bụi có dạng hình hộp chữ nhật, chiều cao hộp phấn bằng 8,2cm và đáy của nó có hai kích thước là 8,5cm ;10,5cm (xem hình vẽ sau). Tìm góc phẳng nhị diện [A,B'D',A'] (tính theo độ, làm tròn kết quả đến hàng phần chục).  (ảnh 2)

Tam giác \({A^\prime }{B^\prime }{D^\prime }\) vuông tại \({A^\prime }\) có đường cao \({A^\prime }H\) nên

\(\frac{1}{{{A^\prime }{H^2}}} = \frac{1}{{{A^\prime }{B^{\prime 2}}}} + \frac{1}{{{A^\prime }{D^{\prime 2}}}} \Rightarrow {A^\prime }H = \frac{{{A^\prime }{B^\prime } \cdot {A^\prime }{D^\prime }}}{{\sqrt {{A^\prime }{B^{\prime 2}} + {A^\prime }{D^{\prime 2}}} }} = \frac{{357}}{{2\sqrt {730} }}{\rm{. }}\)

Tam giác \(AH{A^\prime }\) vuông tại \({A^\prime }\) có:

\(\tan \widehat {AH{A^\prime }} = \frac{{A{A^\prime }}}{{{A^\prime }H}} = \frac{{8,2}}{{\frac{{357}}{{2\sqrt {730} }}}} \Rightarrow \widehat {AH{A^\prime }} \approx {51,14^^\circ }\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(P(X) = \frac{5}{{18}}\). 

B. \(P(X) = \frac{5}{8}\).
C. \(P(X) = \frac{7}{{18}}\). 
D. \(P(X) = \frac{7}{8}\).

Lời giải

Gọi \(A\) là biến cố "Chọn được 2 viên bi xanh"; \(B\) là biến cố "Chọn được 2 viên bi đỏ", \(C\) là biến cố "Chọn được 2 viên bi vàng" và \(X\) là biến cố "Chọn được 2 viên bi cùng màu".

Ta có: \(X = A \cup B \cup C\) và các biến cố \(A,B,C\) đôi một xung khắc.

Do đó, ta có: \(P(X) = P(A) + P(B) + P(C) = \frac{{C_4^2}}{{C_9^2}} + \frac{{C_3^2}}{{C_9^2}} + \frac{{C_2^2}}{{C_9^2}} = \frac{1}{6} + \frac{1}{{12}} + \frac{1}{{36}} = \frac{5}{{18}}\).

Chọn A.

Lời giải

Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường: \(v = S' =  - 3{t^2} + 6t + 9\)

Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường: \(a = S'' =  - 6t + 6\)

Gia tốc triệt tiêu khi \(S'' = 0\) \( \Leftrightarrow t = 1\).

Khi đó vận tốc của chuyển động là \(S'\left( 1 \right) = 12\,{\rm{m/}}\,{\rm{s}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP