Câu hỏi:

16/12/2025 512 Lưu

Cho hàm số \(f(x) = {\cos ^2}2x + 2{(\sin x + \cos x)^3} - 3\sin 2x + m\). Số các giá trị nguyên của \(m\) để \({f^2}(x) \le 36\,\,\forall x\) là?

 

A. 10        
B. 13     
C. 11       
D. 12

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là D

Phương pháp giải

Đặt \(t = \sin x + \cos x\) đưa về hàm số phụ thuộc biến \(t\) và khảo sát hàm số đó

Lời giải

Ta có :

\({\cos ^2}2x + 2{(\sin {\rm{x}} + \cos {\rm{x}})^3} - 3\sin 2x + m = 1 - {\sin ^2}2x + 2{(\sin {\rm{x}} + \cos x)^3} - 3\sin 2x + m\)

Đặt \(t = \sin {\rm{x}} + \cos x,\,\,t \in [ - \sqrt 2 ;\sqrt 2 ]\)

\( \Rightarrow {t^2} = {(\sin {\rm{x}} + \cos x)^2} \Leftrightarrow {t^2} = {\sin ^2}x + 2\sin x\cos x + {\cos ^2}x = 1 + \sin 2x\)

\( \Rightarrow \sin 2x = {t^2} - 1\)

Khi đó ta được: \(1 - {\left( {{t^2} - 1} \right)^2} + 2{t^3} - 3\left( {{t^2} - 1} \right) + m = 1 - \left( {{t^2} - 1} \right)\left( {{t^2} + 2} \right) + 2{t^3} + m\)

Xét \(h(t) = 1 + 2{t^3} - \left( {{t^2} - 1} \right)\left( {{t^2} + 2} \right) = - {t^4} + 2{t^3} - {t^2} + 3\)

Ta có \({f^2}(x) \le 36,\forall x \Leftrightarrow |h(t) + m| \le 6 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{h(t) + m \le 6}\\{h(t) + m \ge - 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{h(t) \le 6 - m}\\{h(t) \ge - 6 - m}\end{array}} \right.} \right.\)

Xét hàm số \(h(t) = - {t^4} + 2{t^3} - {t^2} + 3\) trên đoạn \([ - \sqrt 2 ;\sqrt 2 ]\)

\({h^\prime }(t) = - 4{t^3} + 6{t^2} - 2t \Rightarrow {h^\prime }(t) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = 0}\\{t = 1}\\{t = \frac{1}{2}}\end{array}} \right.\)

Ta có bảng biến thiên :

Cho hàm số f(x) = cos ^2}2x + 2{sin x + cos x)^3} - 3sin 2x + m (ảnh 1)

Khi đó

\(\left\{ {\begin{array}{*{20}{l}}{h(t) \le 6 - m}\\{h(t) \ge - 6 - m}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}\mathop {Max}\limits_{t \in [ - \sqrt 2 ,\sqrt 2 ]} h(t) \le 6 - m\\\mathop {Min}\limits_{t \in [ - \sqrt 2 ,\sqrt 2 ]} h(t) \ge - 6 - m\end{array} \right.\) \( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{3 \le 6 - m}\\{ - 3 + 4\sqrt 2 \ge - 6 - m}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{m \le 3}\\{m \ge - 3 - 4\sqrt 2 }\end{array}} \right.\)

\( \Rightarrow m \in \{ - 8; - 7; - 6; - 5; - 4; - 3; - 2; - 1;0;1;2;3\} \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là D

Phương pháp giải

Sử dụng công thức tính tính thể tích: V = hS

Xác định các thông số trạng thái.

Áp dụng công thức định luật Boyle.

Lời giải

Xét trạng thái 1: \(\left\{ {\begin{array}{*{20}{l}}{{p_1}}\\{{V_1} = {h_1}S}\end{array}} \right.\)

Xét trạng thái 2: \(\left\{ {\begin{array}{*{20}{l}}{{p_2} = 3{p_1}}\\{{V_2} = {h_2}S}\end{array}} \right.\)

Quá trình đẳng nhiệt diễn ra nên ta có: \({p_1}{V_1} = {p_2}{V_2}\)

\(\begin{array}{l} \Rightarrow {p_1}{h_1}S = 3{p_1}{h_2}S\\ \Rightarrow {h_1} = 2{h_2}\\ \Rightarrow {h_2} = \frac{{{h_1}}}{3} = 5\;{\rm{cm}}\end{array}\)

\( \Rightarrow \) pitong dịch sang trái 10 cm.

Lời giải

Đáp án đúng là B

Phương pháp giải

Sử dụng tương giao đồ thị

Lời giải

Xét hàm số \(y = f\left( {{x^2} - 3x + m} \right)\)

\({y^\prime } = (2x - 3).{f^\prime }\left( {{x^2} - 3x + m} \right)\)

\({y^\prime } = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2x - 3 = 0}\\{{f^\prime }\left( {{x^2} - 3x + m} \right) = 0}\end{array}} \right.\)

Để hàm số \(y = f\left( {{x^2} - 3x + m} \right)\) có nhiều cực trị nhất thì phương trình \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0\) có nhiều nghiệm bội lẻ khác \(\frac{3}{2}\) nhất.

Xét phương trình: \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0 \Leftrightarrow \left( {{x^2} - 3x + m + 3} \right)\left( {{x^2} - 3x + m - 4} \right) = 0\)

\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} - 3x = - m - 3}\\{{x^2} - 3x = 4 - m}\end{array}} \right.\)

Xét hàm số : \(h(x) = {x^2} - 3x\)

\({h^\prime }(x) = 2x - 3,{h^\prime } = 0 \Rightarrow x = \frac{3}{2}\)

Bảng biến thiên hàm số \(h(x) = {x^2} - 3x\)

Cho hàm số \(y = f(x)\) có đạo hàm trên R là f^\prime }(x) = (x + 3)(x - 4) (ảnh 1)

Để \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0 \Leftrightarrow \left( {{x^2} - 3x + m + 3} \right)\left( {{x^2} - 3x + m - 4} \right) = 0\) có nhiều nghiệm bội lẻ nhất \( \Rightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} - 3x = - m - 3}\\{{x^2} - 3x = 4 - m}\end{array}} \right.\) có nhiều nghiệm bội lẻ nhất

Số nghiệm của hai phương trình này là số giao điểm của đồ thị hàm số \(h(x) = {x^2} - 3x\) và các đường thẳng \(y = - m - 3\)\(y = 4 - m\)

Dựa vào bảng biến thiên của hàm số \(h(x) = {x^2} - 3x \Rightarrow \left[ {\begin{array}{*{20}{l}}{ - m - 3 > \frac{{ - 9}}{4}}\\{4 - m > \frac{{ - 9}}{4}}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m < \frac{{ - 3}}{4}}\\{m < \frac{{25}}{4}}\end{array}} \right.} \right.\)

\(m \in [ - 10;5]\), kết hợp các điều kiện \( \Rightarrow m \in \left( {\frac{{ - 3}}{4};5} \right],m \in \mathbb{Z} \Rightarrow m \in \{ 0;1;2;3;4;5\} \)

Vậy tổng các giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán là: 15

Câu 3

A. \(\frac{1}{2}\)    
B. \(\frac{1}{4}\) 
C. \(\frac{1}{3}\)            
D. \(\frac{1}{5}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP